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In order to resolve the controversy about the low-density region of the phase diagram of the 4He
monolayer on graphite, we have undertaken a path integral Monte Carlo study of the system. We
provide direct evidence that the low-density monolayer possesses solid clusters and a low-density vapor
as opposed to the most recent proposal that the system is in a superfluid phase. We further establish
that the rounded heat-capacity peaks observed at low densities are caused by the melting of such solid
clusters and are not associated with the suggested superfluid transition.

PACS numbers: 67.70.+n, 67.40.Kh
Monolayer helium adsorbed on graphite has long
proven to be a fascinating system for studying the growth
and behavior of a quantum film above an atomically or-
dered, uniform substrate and has been used to investigate
a number of nearly two-dimensional (2D) phenomena [1].
A very prominent feature of this layer is a commensurate
solid phase in which one-third of the available substrate
adsorption sites are occupied [2–5]. For densities above
the commensurate, the system passes through a region of
domain wall phases before forming an incommensurate
triangular solid phase. On the other hand, the nature
of the phase diagram below the commensurate density
at low temperatures is less well established, with two
competing pictures. One possibility is that the phase is
a solid with clustered vacancies [6]. More recently, it
has been suggested that the solid melts if the density is
decreased, forming a low temperature liquid phase [7]
that could be a candidate in the search for a monolayer
superfluid with no underlying inert layer [7,8].

The solid cluster picture has been discussed by Ecke
et al. [6]. They note that since the commensurate solid
phase is in the same universality class as the three-state
Potts model [9–11], then at lower densities the film should
consist of a commensurate solid with vacancies. If the
temperature is raised, the solid melts continuously. Lower-
ing the temperature causes the vacancies to coalesce (phase
separate), a first order transition. The difference between
the temperatures of these two transitions, signaled by heat-
capacity peaks, becomes smaller as the density is lowered
until they meet at a tricritical point, which occurs at about
0.039 atom�Å2 and 1.3 K [6]. Thus, in this picture, the
monolayer consists of solid clusters and a low-density va-
por at low temperatures and densities.

More recent experiments have questioned this conclu-
sion. Greywall and Busch [7] point out that the heat ca-
pacity is not linear in density for the entire region below
the commensurate density, as it must be for phase co-
existence. They instead propose that a self-bound liquid
phase occurs at about 0.04 atom�Å2. This conclusion is
supported by 2D variational calculations [12]. However,
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direct measurements [13] detect no superfluidity, possibly
because of poor substrate connectivity.

In order to resolve this controversy, we have under-
taken a path integral Monte Carlo (PIMC) study of the
low-density first layer. This is the first attempt to directly
investigate this region by an exact, first principles method
that treats the full quantum many-body problem. Our
calculations provide direct evidence that the low-density
monolayer consists of solid clusters. No liquid phase oc-
curs, and there is no possibility for first layer superfluid-
ity. We further establish that the rounded heat-capacity
peaks observed at low densities are caused by the melting
of solid clusters and are not associated with a superfluid
film, as has been suggested [7].

Our PIMC calculations use realistic helium-helium [14]
and helium-substrate interactions. In order to include
the effects of substrate corrugations, we use the full,
anisotropic helium-graphite potential of Ref. [15]. For a
general discussion of the PIMC method and its application
to films, see Refs. [16,17]. In test runs, we determined
that an inverse temperature slice of t � 1�200 K21 was
required to reach the desired accuracy using the leading
order approximation in t for the required high temperature
density matrix. The leading order approximation allows
substrate corrugations to be easily implemented. From
the same test runs, we determined that an l � 3 multilevel
bisection was required. These calculations are performed
in a simulation cell with periodic boundary conditions
and dimensions 25.560 Å 3 22.136 Å. The number of
particles ranged from 20 to 40, with 36 corresponding
to the commensurate density, rc � 0.0636 atom�Å2. We
also allowed for the possibility of particle permutations at
low densities, but none was observed.

It is essential that corrugations be included in the
calculations because the commensurate solid phase results
from them. A recent simulation for the helium monolayer
[18] using the laterally averaged graphite potential [15]
finds that the equilibrium phase is a liquid. At rc, the
film on the featureless substrate is a compressed liquid
that is near the beginning of solid-liquid coexistence.
© 1999 The American Physical Society
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Before presenting evidence that the first layer has solid
clusters, we demonstrate that our simulation method can
reproduce the commensurate solid phase, and that this
phase exhibits meltinglike behavior in agreement with
experiment. We then investigate the low temperature
phase diagram using the Maxwell construction.

Figure 1 illustrates the
p
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3 commensurate solid
phase and its melt using probability density contour plots.
Raising the temperature from 3 to 4 K causes melting,
so that each adsorption site will, after a sufficiently
long simulation run, have an equal probability of being
occupied. Further evidence for solidification comes from
static structure factors. Figure 2 shows our calculations
at and immediately below the commensurate solid density
for the (01) scattering direction. The peaks at 1.70 and
3.40 Å21 are the wave vectors expected for the first two
Bragg scattering peaks for the

p
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3 solid.

The temperature dependence of the static structure
peaks can be used to determine melting temperatures.
Figure 3 shows S�k � 1.7 Å21��N for several densi-
ties. Melting is signaled by a drop in the average peak
height and large statistical fluctuations in peak values.
This is first observed at 2.0, 2.5, 3.0, and 3.33 K for
0.0424, 0.0530, 0.0566, and 0.0636 atom�Å22, respec-
tively. This density dependence of melting is in agree-
ment with the experimental phase diagram, although our
melting temperatures are somewhat higher than the ex-
perimental values. Heat-capacity measurements indicate
the commensurate solid melts at 3 K, and the low-density
(#0.045 atom�Å22) melting peaks are at about 1.5 K.

We have also calculated the temperature dependence
of the energy per particle for several densities. These
possess inflection points that produce heat-capacity peaks
when the values are differentiated, signaling melting.
Two sample calculations of the specific heat are shown
in Fig. 4. At the commensurate density, melting occurs
at about 3.5 K, somewhat above the experimental value
but consistent with the static structure calculations. As
the density decreases, the melting temperature and peak
height also decrease. At 0.0353 atom�Å2, the melting
temperature is about 1.5 K, and the peak is much
smaller and more rounded. We have not attempted to
reproduce the two-peaked structure in the specific heat

FIG. 1. Distribution plots at the commensurate density,
0.0636 atom�Å2, for T � 2.99 K (left) and T � 4.0 K (right).
Filled circles indicate graphite adsorption sites.
between 0.045 and 0.065 atom�Å2 because this is not
computationally feasible.

Our calculated single particle binding energy EB also
agrees with experiment. We find EB � 2143.09 6 0.27,
comparable to the estimated binding energy values of
2141.75 6 1.50 K from scattering [19] and 2142.33 6

2.0 K from thermodynamic analysis [20].
Having demonstrated that our simulation method com-

bined with the referenced interactions can reproduce
known features of the monolayer, we now turn to the
low-density phase. This region is investigated by apply-
ing the Maxwell common tangent construction to the low
temperature values of the total energy to identify unstable
regions at effectively zero temperature. The application
of this method to a system with a constant volume and
varying particle number is described in Ref. [17]. The
free energy at nonzero temperatures is not directly ac-
cessible from PIMC calculations, but we may determine
effectively zero-temperature energy values by a limiting
process [17]. The total free energy and total energy are
the same at zero temperature.

The coexistence region between two stable phases is
characterized by an unphysical upward curvature of the to-
tal (free) energy. In the thermodynamic limit, the energy
values lie on a coexistence line. Such an unstable region
may be identified between zero coverage and rc in the total
energy values shown in Fig. 5. We have verified that all
these energy values have approached the zero-temperature
limit within error bars. All intermediate energy values are
above the coexistence line. In the unstable region, the sys-
tem can phase separate into a zero density vapor and a
commensurates solid cluster. The energy increase results
from the finite cost of creating the phase boundary. We
have verified this by repeating calculations at 0.0358 and

FIG. 2. Static structure factor S�k� for 0.0530 (diamonds),
0.0566 (triangles), and 0.0636 atom�Å2 (squares) at 2.0 K. The
particle numbers are are 30, 32, and 36, respectively.
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FIG. 3. Temperature dependence of the peak height of
the static structure factor. The coverages are 0.0424 (cir-
cles), 0.0530 (filled diamonds), 0.0566 (triangles), and
0.0636 atom�Å2 (filled squares).

0.0636 atom�Å2 at 1 K using 36 and 64 atoms, respec-
tively. The energy at the commensurate density agreed
with previous calculations within error bars. The energy
at the lower density decreased with increased system size,
as expected, but remained above the commensurate en-
ergy. Repeating the entire set of calculations with a larger
simulation cell will result in the unstable energy values
approaching, but remaining above, the solid-vapor coexis-
tence line.

Contour plots of the probability density, shown in Fig. 6,
provide supporting evidence that both solid-vapor coex-
istence and solid phases with vacancies occur. At 1 K
(left-hand side of Fig. 6), the vacancies have coalesced.
Note that there is only one bubble in this figure because
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FIG. 4. The heat capacity at 0.0353 (filled circles) and
0.0636 atom�Å2 (squares). The dashed line is a guide to the
eye. The solid line is the measured specific heat at 0.0367
taken from Ref. [7].
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of periodic boundary conditions. The holes move very
slowly at this temperature, producing long equilibration
times for condensation. We thus calculated the energy for
this system with the vacancies initially separated and then
initially condensed. The energy for condensed vacancies
was lower. At higher temperatures, the vacancies acquire
enough kinetic energy to leave the phase separated state
and diffuse into the solid. As a result, vacancies can be-
come isolated. This is illustrated at 2.5 K in the right-hand
plot of Fig. 6. A series of probability distribution plots re-
veals that these vacancies move in the simulation, so the
equilibration problem encountered at 1.0 K is not present
at this temperature. We note that we still see evidence
of phase separation in contour plots at 2.0 K for the den-
sity shown in Fig. 6, while experimental results seem to
indicate a transition at 1.5 K. We have plotted probability
contours for densities as low as 0.0207 atom�Å2 and ob-
serve solid clusters at all densities.

The strength of our conclusions is limited by the accu-
racy of the interaction model that we use. It is possible that
the substrate may substantially alter the helium-helium in-
teraction, as discussed in Ref. [12] and references therein.
We have repeated the low temperature density scans us-
ing the same mediated interactions employed in [12]. We
found that while the energy per particle increases for all
coverages, the commensurate solid remains the energet-
ically favored phase. Another potential problem is that
the helium-graphite interaction [15] is too corrugated, thus
favoring solidification. We have repeated the low tem-
perature calculations at the commensurate density and at
0.0212 atom�Å2 (near the minimum found in [12]) with
the corrugation strength reduced by as much as 10%. The
commensurate phase remains energetically favored, even
when the McLachlan interaction is also included.
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FIG. 5. Total energy versus coverage. For clarity, energy
values have been shifted by the line Ne0, where N is the
number of particles, and e0 � 2145.12 6 0.056 K is the
minimum energy per particle. e0 occurs at the commensurate
density. The dashed line is the gas-solid coexistence line.
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FIG. 6. Probability distributions for 0.0566 atom�Å2 at T �
1.0 (left) and 2.5 K (right). The filled circles give the locations
of graphite potential minima.

Finally, we wish to discuss the arguments of Grey-
wall and Busch (GB) against solid clusters and in fa-
vor of the superfluid phase. Their primary objection to
solid-vapor coexistence is that this should be signaled by
linear heat-capacity isotherms for the entire region from
zero coverage up to the commensurate density. Their
published data show that for temperatures from 0.2 to
0.5 K, the isotherms are linear only between 0.025 and
0.060 atom�Å2. At 0.1 K, the upper end point is about
0.055 atom�Å2. As a possible explanation, we suggest
that the departure from linearity below 0.025 atom�Å2 is
caused by the presence of multiple finite-sized clusters. At
low densities, solid clusters nucleate around surface de-
fects. Initially, there are many small metastable clusters
with large perimeter-to-area ratios. Increasing the density
increases the size of the clusters until the surface is cov-
ered by a few large solid clusters with negligible boundary
effects. Thus, the heat capacity exhibits linear behavior
only after the solid clusters are sufficiently large so that
the perimeter-to-area ratio is small. This presumably oc-
curs for coverages above 0.025 atom�Å2. GB have used a
similar explanation in their arguments for solid-liquid and
liquid-gas coexistence in regions that do not have linear
isotherms.

GB’s identification of coverages near 0.04 atom�Å2

as liquid is based partly on simulation results for 2D
helium on a flat substrate, the most relevant calculations
then available. As GB note, the large peak associated
with the melting of the uniform commensurate solid
phase first emerges above 0.04 atom�Å2. 2D helium
is a liquid near this density [21], suggesting that first
layer coverages below 0.04 may be liquid. Unlike the
purely 2D simulations, our calculations take the role of
substrate effects into account. As we have shown, surface
corrugations push the density of the energy minimum up
from about 0.04 on a flat substrate to 0.0636 atom�Å2

and produce solidification. GB also show that their low-
density heat-capacity results are in general agreement
with a PIMC calculation for 2D superfluid helium [22],
suggesting that there might be a superfluid transition in the
first layer. We have shown in Fig. 4 that these rounded
heat capacities are produced by the melting of a solid
cluster and are not associated with a superfluid transition.
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