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The two-dimensional electron gas (2DEG) in moderate magnetic fields in ultraclean AlAs-GaAs het-
erojunctions exhibits transport anomalies suggestive of a compressible anisotropic metallic state. Using
scaling arguments and Monte Carlo simulations, we develop an order parameter theory of an electron
nematic phase. The observed temperature dependence of the resistivity anisotropy behaves like the orien-
tational order parameter if the transition to the nematic state occurs at a finite temperature Tc � 65 mK,
and is slightly rounded by a small background microscopic anisotropy. We propose a light scattering
experiment to measure the critical susceptibility.

PACS numbers: 73.40.Kp, 73.20.Dx, 73.40.Hm
Recently [1] two of us introduced the concept of liquid
crystal phases of the two-dimensional electron gas (2DEG)
in large magnetic fields, as an extension of earlier work on
high temperature superconductors [2,3]. Electronic liquid
crystal phases are quantum mechanical analogs of classical
liquid crystals, and are predicted [2,3] to be a generic fea-
ture of strongly correlated fermionic systems. In the case
of the 2DEG, the competing effects of repulsive (Coulomb)
interactions and the quenching of the kinetic energy of
electrons in Landau levels lead naturally to the existence of
such phases. Pursuing this analogy, the phases of a 2DEG
in order of increasing symmetry breaking were charac-
terized as (a) isotropic liquids, (b) nematic liquids, (c)
smectic liquid crystals, and (d) insulating crystals. The
fluid character of states (a) and (b) is obvious, as they are
translationally invariant. The smectic breaks translational
symmetry in only one direction, and so is also a fluid. In-
sulating crystals break the translational symmetry down to
a discrete subgroup, such that there are an integer number
of electrons per unit cell.

Among the isotropic liquids are the various quantum
Hall fluids, while insulating crystals are simply the Wigner
crystal and its generalizations. A smectic (or stripe) phase
has been found in Hartree-Fock calculations, presumably
accurate in high Landau levels [4–7], which provides a
qualitative picture of a smectic state. Moreover, a recent
exact diagonalization study of a system with 12 electrons
in the N $ 2 Landau levels found results consistent with
a smectic (stripe) ground state [8] (up to yet poorly un-
derstood finite size effects). Wigner crystals and “bubble
phases” (crystalline states with several particles per unit
cell) have also been found as Hartree-Fock variational
states. In addition, a predicted charge-density-wave insta-
bility of the smectic phase at Hartree-Fock level [1,3,9,10]
leads to an insulating “stripe-crystal” phase with a
parallelogram-shaped unit cell. However, a microscopic
theory of the nematic phase does not presently exist.

The low energy physics of a quantum smectic can be
understood in terms of a theory of quantum fluctuations
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of the smectic [1,3,9,10], including the phase transition to
the stripe-crystal phase. The long-distance behavior of a
quantum nematic phase is completely determined by sym-
metry and by the associated Goldstone modes. Both smec-
tic and nematic states break rotational symmetry, and as
such transport properties of both states are anisotropic. In
Ref. [1] we argued that, while the smectic and nematic
states are both natural candidates to explain the anisotropy
observed in recent experiments [11,12] on 2DEG in high
mobility AlAs-GaAs heterostructures, at least at finite tem-
perature, there are strong reasons to favor the nematic. The
smectic, if pinned at the boundaries, has an infinite con-
ductivity, at least in one direction, whereas the measured
(anisotropic) conductivity has a finite T ! 0 limit. In ad-
dition, the data shows a pronounced temperature depen-
dence of the resistivity, consistent with the existence of a
finite temperature phase transition; since the energy of a
dislocation is still finite even for a Coulomb interaction the
smectic always melts at any nonzero temperature [13]. In
the present paper we explore the universal properties of the
2D electron nematic.

The experiments of Refs. [11] and [12] have revealed
the existence of regimes of magnetic fields in which the
2DEG exhibits characteristics of a compressible fluid
with an unexpectedly large and temperature-dependent
anisotropy in its transport properties. This occurs when
the Landau level index N lies in the range 2 # N # 6.
The large anisotropy is seen only in high mobility samples.
In the same samples, similar behavior has also been seen
in the first N � 1 Landau level when the magnetic field
is tilted [14]. A large number of fractional quantum Hall
(FQH) states are observed, and the subtle FQH state at
n � 5�2 is sharp. The experimental facts are as follows:
(i) Measurements on square samples show that, as the
temperature is lowered below 100 mK, the longitudinal
resistance Rxx grows very rapidly while Ryy becomes
smaller; as T ! 0, their ratio approaches a constant [15]
in the range 100 , Rxx�Ryy , 3500, where x and y are
orthogonal lattice directions. (ii) In Hall bars [11,16], Ryy
© 2000 The American Physical Society
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is essentially temperature independent while Rxx increases
by a factor of 5–10 as the temperature is lowered below
100 mK. (iii) The compressible (dissipative) regime
occupies a finite range of magnetic fields DB, centered
around the middle of the partially filled Landau level,
and, unlike the conventional transition between plateaus,
DB does not shrink as the temperature is lowered. (iv)
In the same range of magnetic fields the Hall resistance
varies continuously with the magnetic field. (v) At the
peak, the conductivity syy is typically of the order of
e2�h (see below and Refs. [1] and [17]). (vi) An in-plane
magnetic field tunes the anisotropy through zero, and
reverses the roles of the x and y directions. (vii) In the
region of the resistivity peak, the I-V curves are highly
nonlinear but show no threshold (depinning) behavior
[11,16]. (ix) There are reentrant integer quantum Hall
plateaus symmetrically located for magnetic fields outside
the compressible regime. (x) The anisotropy has not been
reported in lower mobility samples which show instead
the (expected) phase transition between quantum Hall
states.

A natural interpretation of the experiments is that, in
regimes in which interactions dominate over the effects
of disorder, instead of the expected transition between
plateaus in the middle of the partially filled Landau level,
the 2DEG forms a compressible anisotropic fluid. Be-
cause a continuous (rotational) symmetry cannot be spon-
taneously broken in D � 2, for such an anisotropy to be
observable [1] the sample must have a small background
microscopic anisotropy whose effect is greatly amplified
at low temperatures by the collective properties of the
state. Specifically, we will show that the experimentally
observed temperature dependence of the anisotropy can be
understood as evidence for a finite temperature Kosterlitz-
Thouless (KT) transition from a two-dimensional nematic
to an isotropic fluid [13,18], which is rounded by a sym-
metry breaking field representing the effects of the back-
ground anisotropy. We present an analysis (Fig. 1) of
the experimental data of Lilly et al. [11], and a fit with
the results of a Monte Carlo simulation of a model of a
classical nematic in a symmetry breaking field (Fig. 2).
The results strongly support our earlier claim [1] that
the anisotropic transport occurs where the 2DEG is in
a nematic phase (at least at finite temperature). They
also give some indirect support to the further conjecture,
made in Ref. [1], that there is a direct transition as a
function of B from the nematic state to an insulating
stripe-crystal phase, which was identified with the inner-
most of the reentrant quantum Hall liquids. (See also
Ref. [19].)

In 2D, the nematic has only quasi-long-range order; its
finite temperature transition to a disordered liquid can be
described by the two-dimensional classical XY model with
a director order parameter [13]. Such a description should
fail at (very) low temperatures where quantum fluctuations
(and/or quenched disorder) become important. Since the
order parameter of the nematic state is a director field,
FIG. 1. Resistivities rxx and ryy determined from the resis-
tance data of Lilly et al. [11,16] at n � 9�2, after deconvolut-
ing the effects of the geometry; ryy is essentially constant for
the entire range of temperatures, as in Hall bars. Inset: The
function x�T�.

�m��r�, it is periodic under rotations by p, and has the form
mx��r� 1 imy��r� � exp�2iu�r �. The classical Hamiltonian
of this system is thus

H � 2J
X

�r ,m�x,y

cos�2Dmu�r � 1 h
X

�r

cos�2u�r � , (1)

where, for simplicity we have used a square lattice of unit
spacing whose sites are labeled by the lattice vectors �r . In
Eq. (1), we have used the notation Dmu�r � u�r1�em

2 u�r ,
where em is a unit vector along the direction m � x, y, and
J is the stiffness, the energy required to rotate two nearby
regions by a small angle. The quantity h breaks rotational
symmetry explicitly. It represents the effects of a back-
ground symmetry breaking field, such as the anisotropy
and/or the effects of a parallel magnetic field.

FIG. 2. Fit of the Monte Carlo data for a 100 3 100 lattice,
to the data of Lilly et al. [11,16]. The best fit is found for
J � 73 mK, h � 0.05J � 3.5 mK, and Tc � 65 mK.
1983
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Because two is the lower critical dimension for continu-
ous symmetry breaking, for 0 , T , Tc the system is
controlled by a line of critical points [18]. In this range
of T , where classical Goldstone excitations of the nematic
(“spin waves”) dominate, the correlation function G��r� �
�exp 2i�u��r� 2 u��0��� of the order parameter has power
law behavior, G��r� � 1�j�rjh�T�, with h � 2T�pk�T � and
a divergent susceptibility. Here h ! 1�4 as T ! Tc and
k�T � is the helicity modulus, which approaches k�0� �
4J as T ! 0 and k�Tc� � 4Tc�p . In the presence of a
symmetry breaking field h, the order parameter behaves
like m � �exp�2iu�� � jhj1�d, where d � 4�h 2 1 and
d�Tc� � 15. For T . Tc, the correlation length is finite,
and diverges at Tc like j � exp�A�

p
T 2 Tc�, where A

is a (nonuniversal) constant. At finite h the correlation
length is always finite, and the singularities of the KT
transition get rounded. In this regime, even a very small
symmetry breaking field induces a very large expectation
value of the order parameter. For T . Tc, m � x�T �h,
where x�T � � j7�4 is the susceptibility.

How is this thermodynamic transition, which describes
the breaking of rotational invariance, related to the trans-
port properties? On general grounds, one expects that,
near a phase transition, quantities which transform in the
same way under the symmetry should be related, even if
one is a transport coefficient and the other a thermody-
namic property. In particular [1], the combination of re-
sistivities z � �rxx 2 ryy���rxx 1 ryy� transforms like
the order parameter m � �exp�i2u��. It should be related
to the order parameter through an odd analytic function
z � f�m�. Therefore, near Tc, if the symmetry break-
ing is small, the linear approximation f�m� ~ m 1 O�m3�
should be reasonably accurate [20].

We can determine if the 2DEG is in a nematic phase by
analyzing the temperature dependence of the resistivity in
terms of the temperature dependence of the order parame-
ter of the nematic in the presence of a symmetry breaking
field. What is needed is the function m � F�T , h�, the
equation of state, which we computed by a Monte Carlo
simulation of the classical XY model of Eq. (1). Notice
that we relate m to a local (intensive) property such as the
resistivity instead of to the resistance, which is extensive
and sensitive to significant finite size effects. However,
the experimental data gives the resistances Rxx and Ryy

as functions of temperature, not the resistivities. Thus,
in order to fit the data, we extracted the resistivities from
the measured resistances, using a method discussed below,
with the result shown in Fig. 1.

One result of this analysis is that the resistivities for
the square sample behave exactly in the same way as the
resistances of the Hall bars. Given the low T values of rxx

and ryy in Fig. 1, and the (large) measured value of the
Hall conductance, one finds that the peak value of the con-
ductivity is syy � 1.12e2�h and sxx � 0.11e2�h. No-
tice that rxx saturates rather sharply below 55 mK and
that both rxx and ryy approach nonzero (and different)
1984
values as T ! 0. Thus, the 2DEG remains in an
anisotropic compressible (metallic) state, down to the
lowest accessible temperatures.

Having determined the temperature dependence of
the resistivities, we can now see if it is consistent with
a (rounded) phase transition from a high temperature
isotropic fluid phase to a low temperature nematic phase.
We have done this by means of a Monte Carlo Metropolis
simulation of the 2D XY model of Eq. (1) on square
lattices of sizes 40 3 40 through 120 3 120, for the
range of symmetry breaking fields 0.01J , h , 0.5J,
and for a wide range of temperatures (see below). In
Fig. 2 we show our Monte Carlo data for the order
parameter as a function of temperature for h � 0.05J.
For this range of symmetry breaking fields, we find that
for L � 100 the finite size effects on the order parameter
are very small. We have fitted the data by assuming that
z � �rxx 2 ryy���rxx 1 ryy� is actually equal to the
order parameter m [21]. Having done so, we fitted the
data by finding the best value of J that fits the data for a
given value of h, and then changed h to get the best fit.

The classical nematic does indeed explain the
temperature dependence; the data is consistent with
a thermodynamic Kosterlitz-Thouless transition at
Tc�h � 0� � 0.88J � 65 mK [22], slightly rounded
by a background anisotropy field of magnitude
h � 0.05J � 3.5 mK, which is a very small energy
scale. Notice that both the stiffness J � 73 mK and h
are much smaller than the Coulomb energy, although they
are comparable with the gap in the n � 5�2 (presumably
paired) state, which hints a possible common origin.
Below 55 mK the fit is not as good. In this temperature
range the XY order parameter is big (larger than 1�2) so
there is no reason to expect z � m. However, z strikingly
saturates (unlike m which shows the characteristic linear
temperature behavior of classical spin wave theory) so the
discrepancy may be indicating that quantum mechanical
effects (or disorder) are important at low T .

Our analysis of the experiments strongly indicates
that the 2DEG in large magnetic fields in clean samples
has regimes where it behaves as a nematic fluid, an
anisotropic metal. Such a metallic state should have a
strong signature in polarized light scattering experiments.
In particular, a nematic has long range fluctuations in
the orientational order, which will cause the polariza-
tion tensor correlation function (and the corresponding
longitudinal and transverse susceptibilities xL and xT )
to have a singularity at Tc (cut off by the anisotropy).
This effect is similar to critical opalescence but for
orientational order instead of density fluctuations.
For nonzero and small background anisotropy h, for
T , Tc, xL is xL � h2a , with a � 1 2 1�d, where
a � 14�15 at Tc. For T . Tc, xL can be written in
a scaling form as x�h, T � � j7�4F0�hj15�8�, where
F0�0� � 1 and F0�x� � x214�15 as x ! `; as discussed
above, j�T � � exp�2A�

p
t�, where t � T�Tc 2 1.
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Thus, at fixed but small h, as the temperature is low-
ered, xL increases very rapidly to a maximum above
Tc, with a crossover to a critical behavior �h2a�T�,
where a�T � � 2�7 1 t���15 1 t� for jhj ø T , and
xL � �pT�2h� �1��4p2J 1 h��, for T ø jhj. On the
other hand, by Goldstone’s theorem, xT � m�h, where
m is the order parameter (Fig. 2). xL and xT are shown
in Fig. 3. Although the specific heat of the 2DEG is
very hard to measure, it should have a broad bump at
a temperature T� . Tc set by the core energy of the
disclinations of the nematic phase, while at Tc there is
a very weak essential singularity [18] (rounded by the
anisotropy).

Finally, we summarize how we determined the resis-
tivities. It was observed recently [15,23] that on square
samples there is a large distortion of the current distribu-
tion. If the 2DEG has an anisotropic but homogeneous
resistivity tensor [24], one can calculate the currents using
conformal mappings [25]. If the principal axes are aligned
with the edges, one finds

Rxx�Ryy � g�x��g�1�x� , (2)

where x � �Ly�Lx�
p

ryy�rxx 	 x�T � measures the as-
pect ratio Ly�Lx and the ratio of resistivities, and

g�x� � ln

µ
u3�ipx�2� 1

p
k u2�ipx�2�

u3�ipx�2� 2
p

k u2�ipx�2�

∂
. (3)

u2�z� and u3�z� are theta functions with modulus k

k � 4
p

q
Ỳ
n�1

µ
1 1 q2n

1 1 q2n21

∂4

, (4)

where q � exp�22px� is the period [25]. Given Rxx�Ryy

at different temperatures, and using Eq. (2), we calcu-
lated the function x�T � (shown in the inset of Fig. 1). At
high T , x�T � approaches a value somewhat larger than
1, but it is smaller than 1 at lower temperatures, and

FIG. 3. Longitudinal and transverse susceptibilities of a clas-
sical nematic on a 100 3 100 lattice, for h � 0.05J.
both the resistances and the resistivities show a crossing
at some high temperature [26]. This effect indicates that
the sample is not homogeneous at large scales. A macro-
scopic inhomogeneity is equivalent to an effective aspect
ratio, and by choosing Ly�Lx � 1.12 we can make the
ratio rxx�ryy ! 1 at high temperature.
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