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Critical behavior of the planar magnet model in three dimensions

Kwangsik Nho and Efstratios Manousakis
Department of Physics and Martech, Florida State University, Tallahassee, Florida 32306
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We study the critical behavior of the three-dimensional planar magnet model in which each spin is consid-
ered to have three components of which only thex and y components are coupled. We use a hybrid Monte
Carlo algorithm in which a single-cluster update is combined with the over-relaxation and Metropolis spin
reorientation algorithm. Periodic boundary conditions were applied in all directions. We have calculated the
fourth-order cumulant in finite-size lattices using the single-histogram reweighting method. Using finite-size
scaling theory, we obtained the critical temperature which is very different from that of the usualXY model.
At the critical temperature, we calculated the susceptibility and the magnetization on lattices of size up to 423.
Using finite-size scaling theory we accurately determine the critical exponents of the model and find thatn
50.670(7), g/n51.9696(37), andb/n50.515(2). Thus we conclude that the model belongs to the same
universality class with theXY model, as expected.@S0163-1829~99!07117-9#
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I. INTRODUCTION

Our understanding of critical phenomena has been sig
cantly advanced with the development of t
renormalization-group~RG! theory.1 The RG theory predicts
relationships between groups of exponents and that there
universal behavior. In a second-order phase transition,
correlation lengthj diverges as the critical point is ap
proached, and so the details of the microscopic Hamilton
are unimportant for the critical behavior. All members of
given universality class have identical critical behavior a
critical exponents.

The three-dimensional classicalXY model is relevant to
the critical behavior of many physical systems, such as
perfluid 4He, magnetic materials and the high-Tc supercon-
ductors. In the pseudospin notation, this model is defined
the Hamiltonian

H52J (̂
i j &

~Si
xSj

x1Si
ySj

y!, ~1!

where the summation is over all nearest-neighbor pairs
sites i and j on a simple cubic lattice. In this model on
considers that the spin has two components:Si5(Si

x ,Si
y) and

Si
x21Si

y251.
In this paper we wish to consider a three component lo

spin Si5(Si
x ,Si

y ,Si
z) and the same Hamiltonian as given b

Eq. ~1! ~namely, with no coupling between thez components
of the spins! in three dimensions. Even though the Ham
tonian is the same, namely, there is no coupling between
z component of the spins, the constraint for each spin
(Si

x)21(Si
y)21(Si

z)251, which implies that the quantity
(Si

x)21(Si
y)2 is fluctuating. In order to be distinguished fro

the usualXY model, the nameplanar magnet modelwill be
adopted for this model.

The reason for our desire to study this model is that i
related directly to the so-called modelF ~Ref. 2! used to
study nonequilibrium phenomena in systems, such as su
fluids, with a two-component order parameter and a c
served current. In the planar magnet model, the order par
PRB 590163-1829/99/59~17!/11575~4!/$15.00
fi-

s a
e

n

d

u-

y

of

al

he
is

s

er-
-

m-

eter is not a constant of the motion. A constant of the mot
is the z component of the magnetization. Thus there is
important relationship between the order parameter and tz
component of magnetization, which is expressed by
Poisson-bracket relation.2 This equation is crucial for the hy
drodynamics and the critical dynamics of the system. O
therefore needs to find out the critical properties of t
model in order to study nonequilibrium properties of sup
fluids or other systems described by the modelF. In future
work, we shall use modelF to describe the dynamical critica
phenomena of superfluid helium. Before such a projec
undertaken, the static critical properties of the planar mag
model should be investigated accurately.

Although the static properties of theXY model with Si

5(Si
x ,Si

y) have been investigated by a variety of statistic
mechanical methods,3–11 the system withSi5(Si

x ,Si
y ,Si

z)
has been given much less attention. So far the critical beh
ior of this model has been studied by high-temperat
expansion12 and Monte Carlo~MC! simulation methods.13,14

High-temperature expansion provides the value for the c
cal temperature and the critical exponents. In these re
MC calculations,13,14 only the critical temperature is dete
mined. These MC calculations were carried out on small s
systems and thus only rough estimates are available.

In this paper we study the three-dimensional planar m
net model using a hybrid Monte Carlo method~a combina-
tion of the cluster algorithm with over-relaxation and M
tropolis spin reorientation algorithm! in conjuction with
single-histogram reweighting technique and finite-size sc
ing. We calculate the fourth-order cumulant, the magneti
tion, and the susceptibility~on cubic latticesL3L3L with L
up to 42! and from their finite-size scaling behavior we d
termine the critical properties of the planar magnet mo
accurately.

II. PHYSICAL QUANTITIES
AND MONTE CARLO METHOD

Let us first summarize the definitions of the observab
that are calculated in our simulation. The energy density
our model is given by
11 575 ©1999 The American Physical Society
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^e&5E/V5
1

V (̂
i j &

^Si
xSj

x1Si
ySj

y&, ~2!

where V5L3 and the angular brackets denote the therm
average. The fourth-order cumulantUL(K)15 can be written
as

UL~K !512
^m4&

3^m2&2
, ~3!

wherem5(1/V)(Mx
21M y

21Mz
2)1/2 is the magnetization pe

spin, M5( iSi and K5J/(kBT) is the coupling, or the re-
duced inverse temperature in units ofJ. The fourth-order
cumulantUL(K) is one important quantity which we use
determine the critical coupling constantKc . In the scaling
region close to the critical coupling, the fourth-order cum
lant UL(K) as function ofK for different values ofL are
lines which go through the same point. The magnetic susc
tibility per spin x is given by

x5VK~^m2&2^m&2!, ~4!

wherem is the magnetization vector per spin.
The three-dimensional planar magnet model with fer

magnetic interactionsJ.0 has a second-order phase tran
tion. In simulations of systems near a second-order ph
transition, a major difficulty arises which is known as critic
slowing down. The critical slowing down can be reduced
using several techniques and what we found as optimal
our case was to use the hybrid Monte Carlo algorithm
described in Ref. 16. Equilibrium configurations were c
ated using a hybrid Monte Carlo algorithm which combin
cluster updates of in-plane spin components17 with Metropo-
lis and over-relaxation18 of spin reorientations. After eac
single-cluster update, two Metropolis and eight ov
relaxation sweeps were performed.16 The K dependence o
the fourth-order cumulantUL(K) was determined using th
single-histogram reweighting method.19 This method enables
us to obtain accurate thermodynamic information over
entire scaling region using Monte Carlo simulations p
formed at only a few different values ofK. We have per-
formed Monte Carlo simulation on simple cubic lattices
sizeL3L3L with 6<L<42 using periodic boundary con
ditions applied in all directions and 106 MC steps. We car-
ried out of the order of 10 000 thermalization steps and of
order of 20 000 measurements. After we estimated the c
cal couplingKc , we computed the magnetization and t
magnetic susceptibility at the critical couplingKc .

III. RESULTS AND DISCUSSION

In this section, we first have to determine the critical co
pling Kc , and then to examine the static behavior arou
Kc . Binder’s fourth-order cumulant15 UL(K) is a convenient
quantity that we use in order to estimate the critical coupl
Kc and the correlation length exponentn.

Near the critical couplingKc , the cumulant is expande
as

UL5U* 1U1L1/nS 12
T

Tc
D1¯ . ~5!
l
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Therefore if we plotUL(K) versus the couplingK for several
different sizesL, it is expected that the curves for differen
values ofL cross at the critical couplingKc . In order to find
the K dependence of the fourth-order cumulantUL(K), we
performed simulations for each lattice size fromL56 to L
542 at K50.6450 which is chosen to be close to previo
estimates for the critical inverse temperature.12,14TheUL(K)
curves were calculated from the histograms and are show
Fig. 1 for L512, 24, and 32.

If one wishes to obtain higher accurary, then one need
examine Fig. 1 more carefully and to see that the poi
where each pair of curves cross are slightly different
different pairs of lattices; in fact the points where the curv
cross move slowly to lower couplings for larger syste
sizes. For the pair which corresponds to our largest lat
sizes L532 and 42, the point where they cross isKc
'0.644 55. In order to extract more precise critical coupli
Kc from our data, we compare the curves ofUL for the two
different lattice sizesL and L85bL and then find the loca-
tion of the intersection of two different curvesUL andUL8 .
As a result of the residual corrections to the finite-s
scaling,15 the locations depend on the scale factorb5L8/L.
We used the crossing points of theL512, 14, and 16 curves
with all the other ones with higherL8 value, respectively.
Hence we need to extrapolate the results of this method
(ln b)21→0 using (UbL /UL)T5Tc

51. In Fig. 2 we show the

estimate for the critical temperatureTc . Our final estimate
for Tc is

Tc51.5518~2!, Kc50.6444~1!. ~6!

For comparison, the previous estimates areTc51.54(1)
~Refs. 13 and 14! obtained using Monte Carlo simulation an
Tc51.552(3) ~Ref. 12! obtained using high-temperature s
ries. The latter result obtained with an expansion is surp
ingly close to ours.

In order to extract the critical exponentn, we performed
finite-size scaling analysis of the slopes ofUL versusL near
our estimated critical pointKc . In the finite-size scaling re-
gion, the slope of the cumulant atKc varies with system size
like L1/n,

FIG. 1. Fourth-order cumulantUL(K) versus couplingK for
lattice sizesL512, 24, and 32.
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dUL

dK
;L1/n. ~7!

In Fig. 3 we show results of a finite-size scaling analysis
the slope of the cumulant. We obtained the value of the st
exponentn:

n50.670~7!. ~8!

For comparison, the field-theoretical estimate3 is n
50.669(2) and a recent experimental measurement givn
50.6705(6).20

In order to obtain the value of the exponent ratiog/n, we
calculated the magnetic susceptibility per spinx at the criti-
cal couplingKc . The finite-size behavior forx at the critical
point is

x;Lg/n. ~9!

FIG. 2. Estimates forTc plotted versus inverse logarithm of th
scale factorb5L8/L. The extrapolation leads to an estimate ofTc

51.5518(2).

FIG. 3. Log-log plot of the slopes ofU near the crossing poin
versusL. The slope gives an estimate for the critical exponenn
50.670(7).
r
ic

Figure 4 displays the finite-size scaling of the susceptibi
x calculated atKc50.6444. From the log-log plot we ob
tained the value of the exponent ratiog/n:

g/n51.9696~37!. ~10!

From the hyperscaling relationdn5g12b we get the expo-
nent ratiob/n:

b/n50.515~2!. ~11!

The equilibrium magnetizationm at Kc should obey the
relation

m;L2b/n ~12!

for sufficiently largerL. In Fig. 5 we show the results of
finite-size scaling analysis for the magnetizationm. We ob-
tain the value of the exponent ratiob/n ~see Table I!:

FIG. 5. Log-log plot of the magnetization versus the lattice s
L at the critical couplingKc50.6444. The slope gives an estima
for the critical exponentb/n50.515(3).

FIG. 4. Log-log plot of the susceptibility versus the lattice sizeL
at the critical couplingKc50.6444. The slope gives an estimate f
the critical exponentg/n51.9696(37).
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b/n50.515~2!. ~13!

This result agrees very closely to that of Eq.~11! obtained
from the susceptibility and the fourth-order cumulant.

In conclusion, we determined the critical temperature a
the exponents of the planar magnet model with thr

TABLE I. Results for the magnetization and the susceptibili

L x m

12 82.39~28! 0.26195~55!

14 111.88~36! 0.24219~43!

16 145.12~59! 0.22567~55!

18 182.91~52! 0.21241~35!

20 224.08~85! 0.20072~49!

22 272.23~60! 0.19163~23!

24 322.35~98! 0.18308~32!

32 571.0~4.0! 0.15833~66!

42 972.0~4.8! 0.13749~40!
B

d
-

component spins using a high-precision MC method,
single-histogram method, and the finite-size scaling theo
Our simulation results for the critical coupling and for th
critical exponents areKc50.6444(1), n50.670(7), g/n
51.9696(37), andb/n50.515(2). Ourcalculated values for
the critical temperature and critical exponents are sign
cantly more accurate that those previously calculated.
previous results of MC studies of the three-dimensionalXY
model with two-component spins7,9–11are that the static ex
ponentn50.670(2) and the exponent ratiog/n51.976(6),
which are within error bars with our present estimates. T
comparison shows that both the system withSi5(Si

x ,Si
y) and

the planar magnet system withSi5(Si
x ,Si

y ,Si
z) belong to the

same universality class.
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