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We study the continuum limit of the nonlinear o model in 2+1 dimensions and at finite temperature
T, using Monte Carlo simulation on large lattices. Even though the lattice spacing vanishes, dimension-
al transmutation occurs which makes the correlation lengths finite. Assuming that the o model and the
spin- 5 antiferromagnetic Heisenberg model are equivalent at low T, we make contact between the two
models and find that the latter model must order at 7=0. Our results are consistent with neutron-

scattering experiments done on La;CuQs.

PACS numbers: 75.10.Jm, 74.20—z - -

The discovery of the copper-oxide superconductors, as
well as the suggestion that the superconductivity mecha-
nism in these new materials is related to the strong
correlations among purely electronic degrees of f{ree-
dom,! has intensified the interest for understanding one
of the simplest models to account for such correlations:
the Hubbard model. The strong two-dimensional (2D)
spin correlations observed in neutron-scattering experi-
ments? have given credit to the spin-+ antiferromagnetic
(AF) Heisenberg model defined as

H=JYS;'S;, 1)
G

where S; is the spin-4 operator of the conduction-band
electrons localized in the Wannier states around the ith
unit cell of the copper-oxide plane. J is the AF coupling
and the sum is over the nearest neighbors. This model
can be obtained from the Hubbard model at half filling
by taking the strong-coupling limit.> In such a formula-
tion, the Heisenberg model describes interactions that
originate from virtual electron hopping processes.

Recently we simulated®> the spin-§ 2D AF Heisen-
berg model using Handscomb’s quantum Monte Carlo
(MC) method. We calculated the correlation length and
found that it increases very rapidly with decreasing tem-
perature. The results of Refs. 4 and 5 are consistent
with neutron-scattering experiments. It is, however,
difficult to find an efficient quantum MC algorithm to
study large systems and approach low temperatures.

The 2D quantum Heisenberg model is believed to be
equivalent® to the nonlinear ¢ model in the two space
plus one Elucidean time dimensions and at low tempera-
tures. More recently, however, there was a suggestion’
that in the derivation of the nonlinear o model from the
Heisenberg model one encounters a topological term.
This term distinguishes the integer from the half-integer
spin case. The role which such topological terms might
play in the development of the theory of superconductivi-
ty in the copper oxides was part of the reason for the ex-
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citement about this idea. Later, however, the necessity
of such topological terms became less clear and in fact,
today, the two models are believed to be equivalent
without any additional terms.®

The nonlinear o model in 2+1 dimensions has been
recently studied by Chakavarty, Halperin, and Neison
(CHN).® Using a one-loop perturbative renormaliza-
tion-group approach, CHN relate the nonlinear ¢ model
to the spin- 3 Heisenberg AF model at low temperatures
and give a good fit to the data obtained from neutron-
scattering experiments done on La;CuQO.

In this paper we study the nonlinear ¢ model in two
space plus one Euclidean time dimensions and at finite
physical temperature using the MC method. The simu-
lation of this model is easier than that of the quantum
AF Heisenberg model. Using efficient vectorized algo-
rithms suitable for ETA supercomputers we study large-
size lattices (100% 100X 8 is our largest lattice). We cal-
culate the model’s renormalization-group S function
around the 3D critical point which separates the quan-
tum disordered phase from the phase with spontaneous
symmetry breaking. Using the 8 function, we rescale the

calculated correlation lengths at various values of the

coupling g and temperature T and find that all collapse
on the same curve independent of g and the lattice spac-
ing. This gives rise to dimensional transmutation, a
phenomenon well known in field theory, which produces
a finite length scale. Assuming that the spin-3 AF
Heisenberg model and the o model are equivalent at low
temperatures, we make contact between the two models
by comparing the behavior of the correlation lengths at
low temperatures. We find that the two models can be
made equivalent if the spin-3 AF Heisenberg model or-
ders at T=0. We obtain a reasonable fit to the
neutron-scattering data? of the insulator La,CuQj, by
taking J =1270 K, a value close to that reported by Ra-
man scattering experiments. '°

The nonlinear ¢ model in two space plus one Euclide-
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an time dimensions is defined as%’

po  (Bhe

Serr= 2hc V0

)
Here Q is a three-component vector field living on a unit
sphere, ¢ is the spin-wave velocity, and B=1/kpT. We
discretize the space-time and put the model on the
(2+1)-dimensional lattice:

) .

Sa=——X ¥ a&)-laG+E)+ax—E)], ()
2g x p=1

where g =rhc/poa, x covers the (2+1)-dimensional lat-

tice of lattice spacing q, size N ZNﬂ, and

Bhc=Nga. 4)

We have to impose periodic boundary conditions (BC) in
the Euclidean time direction. In this model the average
of the field @ is proportional to the average staggered
magnetization and could describe the dynamics of the
spins within one isolated CuQ; layer.

From the two-point function we can calculate the
correlation length in lattice units . as a function of g,
Npg, and N. For continuum-limit behavior and for elim-
inating finite-size effects, &5 must satisfy 1<K &K N.
We need to take the limit V— oo and keep the time di-
mension finite so that Eq. (4) is satisfied. If, therefore,
N is large enough so that &4 <N, the correlation length
is only a function of N and g. In physical units & is
given by

§=§1an(g,Np)a. (5)

In our simulation we used periodic BC in the space
boundaries also. We used the heat-bath algorithm and
typically 5000 MC steps over the entire lattice for
thermalization and about 10000 for measurements. The
correlation length is extracted from the correlation func-
tion G(x;—x{) of the (Euclidean) time average of
a(x) at two different points in space x; and x{. We
fitted the long-distance behavior of the correlation func-
tion with 4 coshl(x; —x{—N/2)/&ayul. It is known that
for g>g,, where g. is the 3D critical point (ie., at
T=0), the three modes of the theory have degenerate
finite masses (inverse correlation lengths). For g <g,
however, there are two masses in the theory: Two modes
correspond to the Goldstone-mode excitations and be-
come massless in the 3D theory (8— co). They are re-
lated to the radial motion of the average field and give
an exponentially small mass with the size of the finite .
There is also a massive mode associated with fluctuations
in the magnitude (radial component) of the average
field. In this paper we study the mode having the small-
est mass, which dominates the behavior of the correla-
tion function at large distances.

Keeping the physical temperature constant we may
approach the continuum limit a =#Ac¢B/N;— 0 by in-
creasing Ng. To keep the correlation length & constant in
physical units, for any a — 0, we should find the value of

dr [ dxdyl0,0)2+3,0)2+ 3,002,

g which gives the same value of £ This is achieved
through Eq. (6) which defines the function g(a). The
combination of Eqs. (4) and (5) gives E=bhc/ksT,
where b =& (g,/Np)/Ns. In order to keep & constant at
a fixed temperature we should keep the ratio b constant.
b is the physical value of the correlation length at tem-
perature 7 in units of ar=hc/kzT. In Fig. 1 we give b
as a function of g for several values of N5 We notice
that the lines for various Vg pass through the same point
(g.,6™)=(1.45£0.01,0.80 £ 0.05). Let us say that we
would like to define the theory’s coupling constant at the
value b =bg shown in Fig. 1. The line b=b¢ intersects
the various curves for different Ng’s (i.e., in this case in
which the temperature is constant, for different a’s), and
the values of g at the intersections define g(ar/Ng). We
note that limy,—g(ar/Npg)=g.. Because b=b* at
g =g, for large Ng’s (small a’s) we obtain

E*¥=b*he/ksT, (6)

where 5* =0.80£0.05. Notice that at T=0, g, turns
into a critical point. These results confirm the crossover
phase diagram given by CHN on general grounds (Ref.
9). Moreover, in their more recent work (Ref. 11), they
obtain for the universal constant »* =1.1, a value some-
what higher than ours.

Using our results for the correlation length obtained
on lattices of sizes 502% N and 100X N with Nz=2, 4,
6, and 8, we calculate the renormalization-group B func-
tion Brg= —adg(a)/da. Our results for frg are shown
as the inset in Fig. 1. To avoid finite-size effects we used
only those points for which b <2.5. At g=g., Brg
changes sign. At T=0, £* =o0, and for g <g. the sys-
tem enters a phase with spontaneous symmetry breaking,
where the staggered magnetization is nonzero. We see
that close to the critical point Srg(g) is linear:

Bre(@) =—Bilg—g)+.... [0
g
13 14 15 16 1.7
e t LR R RRE RARRRE
100 == g.=1.450(3) “j 0.2
- {
5.0 IE Ng=4 1: rT-T T ——--‘—'———'——; 0.0 B
L ! ]
L ! J-02
Yo 8,=1.28(5) ]
BT \: i j 0.4
bg...... I : =0.
!

FIG. 1. The ratio b =&.u/Ng vs g for different Np. Notice
that all the lines for different Nj pass through the same (fixed)
point (gc,b*). Inset: The renormalization-group g function.
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We find g.=1.450%0.003 and $;=1.28%0.05. In-
tegrating both sides of the equation defining Srg one ob-
tains a(g) =a,expl— [2dg/Brc(g)], where a, is a con-
stant of integration having dimensions of length. The
above equation defines the function g(a) which charac-
terizes the continuum theory. a. is a characteristic pa-
rameter of the theory and the cutoff should be removed
in a way such that a, remains constant. In field theory,
this limiting process where a vanishing length scale
(a—0) and a dimensionless parameter (g) produce a
dimensional quantity (a.) is called dimensional trans-
mutation.'?

We have compared our numerical results with results
obtained in the saddle-point approximation. We find
good agreement in the region g > g., but poor agreement
for g < g.. The saddle-point approximation and details
of the present calculation will be given elsewhere. 13

Using the linear approximation [Eq. (7)1 close to the
critical point we find

a(g) =bacrlg_gcll/ﬁl- 8)
Combining Egs. (4) and (8) we obtain
No=|g—g.|" Vb T, 9)

where kpT,=hc/a,. Substituting a(g) and Ny from

Eqgs. (8) and (9) into Eq. (5) we obtain
£ T l/ﬁx
as f T

1
g lg—g ™ [V

=&jan lg— g

(10)

Since the constants a, and T, are independent of g and a
and ¢ is also independent of g in the process of removing
the cutoff, the function in Eq. (10) is only a function of
t=T/T,. In Fig. 2 we show the function f(z). The data
points in the figure correspond to various g <g. and Ng
values. We see that all scale to a universal curve.
Again, we emphasize the occurrence of dimensional

[ T T

5.0
ﬁb
S~ 1.0 — ——
- -
It R
s o8|

0.1 1 L 1 | [ ! - L*E, iif:,' . '_'_‘ A_L.. b

0 2 4 7 8

t = T/T,

FIG. 2. The function f(z) (see text for definition). Our
data for various g’s collapse on the same curve by using the
calculated renormalization-group B function. The solid line
corresponds to an exponential fit [Eq. (11)].
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transmutation where, although the lattice spacing is re-
moved together with g, we obtain correlation lengths in
units of a finite length scale a, as a function of tempera-
ture ¢ in units of 7.

The curve f(¢) can be approximated by an exponen-
tial,

f(t) =Azexp(B./t), an

as the saddle-point approximation (Ref. 13) and the
most recent work of CHN (Ref. 11) suggest. The best
fit gives A,=0.0795 and B,=4.308, and is shown as a
solid line in Fig. 2.

For g>g. the correlation length in the nonlinear o
model is only a function of g and is independent of 7. At
the critical point g =g, we find that at low T, £ grows as
1/T as the temperature decreases.

It is possible to make contact between the spin- 3 AF
Heisenberg model and the nonlinear o model. In Refs. 4
and 5 we simulated the former and we found it to grow
much more rapidly than 1/T. More precisely, in Ref. 4
we fitted the correlation lengths by &(T) =C/Te?'7,
suggested by the spin-wave theor and/ by the Kos-
terlitz-Thouless form &(T)=cCe?’ 17" 71" "We found
that the latter form fits better and concluded that our
simulation indicated that topological excitations may
play an important role in the dynamics of the spin- %
Heisenberg antiferromagnet. Following our findings for
the o model we attempt to fit our numerical results for
the Heisenberg model by

Elag=AyexpBuJ/T). (12

This form, i.e., without the 1/7 prefactor, also fits our
data well, giving Ay =0.25 and By =1.4 (Ref. 5, Table
II). On this basis we may conclude that if data do not
exist at very low temperatures, prefactors may play an
important role. Hence the results of our simulation*?
may also be consistent with spin-wave theory and the ex-
istence of an ordered state at 7'=0.

-=Let us assume that the two models are equivalent at
low T. In order to obtain the best fit between the corre-
lation lengths calculated for the two models, we need to
assume that the spin-3 AF Heisenberg model corre-
sponds to the broken phase (g <g.) of the ¢ model in
the continuum limit. Therefore the spin-3 AF Heisen-
berg model should order at 7=0 and Ayay =A.a, and
ByJ=B,T,. We obtain a,=3.14ay and Ac=1.02Jay.
In Oguchi’s calculation,'# the value of the renormalized
spin-wave velocity for a spin-7 antiferromagnet #Ac
=1.64Jay is lower than our value for the bare spin-wave
velocity which enters in the nonlinear o model. More re-
Gomez-Santos, Joannopoulos, and Negele
(G:IN) 5 have performed similar simulations of the
spin-3 AF Heisenberg model. They find overall agree-
ment at higher temperatures with our results reported in
Ref. 4, but they find some 20% smaller correlation
lengths at lower temperatures. GJN argue that the ori-
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FIG. 3. The solid line corresponds to an exponential fit to
our results for both the nonlinear o model and the spin-% AF
Heisenberg model, taking for the AF coupling the value
J=1270 K. The open circles with error bars are neutron-
scattering data taken on the insulator La;CuOQa.

gin of the discrepancy may be that their improved algo-
rithm searches the phase space more efficiently. We be-
lieve that the discrepancy could also be due to finite-size
effects which may affect the two calculations differently

|
|
N
-t

P

agrees with tho data very close to the 3D Neéel CI'Ithal |
temperature Ty ~200 K. Smaller values of J will bring
our results closer to the data in that region but further

P away from the data at higher T.
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because the correlation functions have been calculated in

different ways. Notice that the correlation length (Fig. 6
of Ref. 15) at, for example, temperature T/J=0.5 sys-
tematically increases by increasing the size of their lat-
tice. In our calculation finite-size effects appear at
larger correlation lengths (somewhat lower tempera-
ture). Hence, our results (dashed line in their Fig. 6)
may approximate the infinite system better. Neverthe-
less, using the values for 45 =0.32 and By =1 reported
by GJIN, we obtain hc==0.93Jay, which is somewhat
lower than our value. If, on the other hand, we use the
most recent form of CHN,!' who find Ay =0.467 and
By =094, we find Ac==1.27Jay, which is closer to
Oguchi’s result.

In Fig. 3 we plot the inverse correlation length versus
T as observed by neutron-scattering experiments.> The
solid curve is the exponential given by Eq. (12) which
fits both the nonlinear ¢ model and the AF Heisenberg
model. In the plot we used ay =3.8 A, the Cu-Cu dis-
tance, and J =1270 K, which is close to the value report-
ed by Raman scattering experiments.!® Our curve dis-
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