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We study the A¢* theory in 4 space-time dimensions in a Monte Carlo simulation on a 10¢ lattice,
through an especially simple and accurate way to calculate the effective potential. All renormalized
parameters are obtained via the effective potential and the propagator. In the continuum limit we
confirm the vanishing of the renormalized self-coupling, and show that the system can exist in one
of two possible phases, both having a free particle of arbitrary mass. In one phase the vacuum ex-
pectation of the field vanishes, while in the other it is nonzero. This opens the possibility that, even
though the self-coupling vanishes, the field can still be used to generate masses for gange bosons and

fermions.

I. INTRODUCTION

Ever since Wilson! showed that in 4 space-time dimen-
sions the self-coupling of the A¢* theory vanishes, there
has been extensive analytic and numerical study on the
subject.>® The interest is justified by the importance of
understanding this simplest of all quantum field theories,
as a prelude to studying the Higgs sector in the standard
model, and in grand unified theories. We offer some new
insight to the problem gained through a Monte Carlo cal-
culation of the effective potential. '

Consider a one-component scalar field ¢(x) in an exter-
nal source J(x), with classical Lagrangian density in Min-
kowski space given by-

L(x)=7(3¢)P —Frop*— 4 hot*+J¢ , (Y
where Ap>0 and — o <y < w. The quantum theory is
defined through the usual Euclidean path integral. An ul-
traviolet cutoff is introduced by discretizing Euclidean
space-time as a four-dimensional (4D) square lattice of
spacing a. Eventually the cutoff is removed by taking the
continuum limit a—0, with the usual attendant renor-
malizations. The field ¢ and the mass gap m (invariant
mass of the lowest excited state) both have dimensions of
inverse length, and hence have the forms

¢=a_l¢latt’ m=a_1mlatt s

where ¢y, is a dimensionless field (but still unrenormal-
ized) and my,, is a dimensionless mass (renormalized).
The renormalized field is ¢,=2Z"'"%p, where Z is the
wave-function renormalization constant. Correspondingly
Z 24, is the dimensionless renormalized field. Clear-

ly both m,, and ¢y, must vanish in the continuum limit,

but the parameter
b=(¢,)/m =Z~1/2<¢1att)/mlatt 3

may be nonzero and finite. At fixed A, the continuum
limit corresponds to the critical value of r;, at which
My =0. On both sides of this critical point we expect to
find different phases, which correspond to continuum-
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field theories with or without spontaneous symmetry
breaking (i.e., the parameter b defined above is nonzero in
one phase, but vanishes in the other). The critical value of
7o is generally nonzero; it vanishes only in lowest-order
perturbation theory.

The mass mj,, can be extracted from the two-particle
correlation function, or propagator A(x), as follows. We
integrate A(x) over spatial coordinates at large values of
the Euclidean time x4. The result should be proportional
to exp(—mx,). Setting x,==ar, so that r is dimension-
less, we have mx4=m,7. The wave-function renormali-
zation constant Z may be extracted from the Fourier
transform A(p) of A(x), as the residue of the pole at
pi=m?. Defining A,4(p)=a ~*A(p), we can write

Z= 51_13) [mlattzAlatt(o)] . 4)

Our renormalized self-coupling constant A, is defined
as % of the amputated one-particle-irreducible (1PI) 4-
point function at zero momenta. (The factor + is chosen
so that in lowest-order perturbation theory A, =2A4.) In nu-
merical calculations, we can get better accuracies by ex-
tracting it from the effective potential U(¢), which can be
calculated as follows.* Introduce a constant external
source J, and calculate the vacuum expectation f={¢).
By regarding J as a function of f we have the derivative
of the effective potential:

U'(f)=J(f) . (5)

Let ¢ be the vacuum expectation of the field in the ab-
sence of an external source, i.e., J(¢o)=0. The effective
— potential has the following expansion:

0 G(n)
>

nen N!

Ulg)= (p—do)*, (6)
where G is the Fourier transform of the unrenormal-
ized amputated IPI n-point function, with all external
four)—momenta set to zero. The renormalized version of
G™ is

G,(.n)=Zn/2G(n) , (7)
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where the wave-function renormalization constant Z can
be obtained from (4) by noting that

J'(¢o)=[Apu(0)] 1. (8)

Thus we can obtain the following renormalized parame-
ters from J(f):

A’r =ZZJ’"(¢0) , . (9)

gy =232 () (10)
M >=ZJ'(¢g) . (11)

Here A, is the renormalized four-particle vertex, and A;,
the renormalized three-particle vertex, which is expected
to be present when ¢¢£0. The relation (11) can be used as
a check on my,y.

From the results of Ref. 2 we can deduce that a contin-
uum limit does not exist for any A,>0. The reason is
that Ay becomes divergent at a nonzero lattice constant.
This phenomenon is reminiscent of the exactly soluble Lee
model,’ in which a ghost® (bound state with negative
norm) appears for all nonzero real values of the renormal-
ized coupling constant. In fact, perturbation theory ex-
tended by the renormalization group’ gives a result very
similar to that in the Lee model:

> ' (12)

where A is the cutoff momentum and m is a mass scale.
For a fixed A, > 0 the cutoff is bounded by a critical value
A, at which Aq diverges:

(A, /m)?= exp(1287%/3A,) . (13)

Thus the cutoff can approach infinity only if A,—0. We
call A, the “ghost point,” by analogy with the Lee model.
The same phenomenon has been conjectured in quantum
electrodynamics (the Landau ghost),” for which
A.=m, exp(37/a), where m, is the electron mass and «
the fine-structure constant. As we shall see, however, per-
turbation theory vastly overestimates the value of A,.

The divergence of Ay at the ghost point means that our
theory reduces to a 4D Ising model, whose critical
behavior therefore governs the continuum limit. Thus,

-the order parameter and the inverse correlation length
have the behavior

(¢, )tB, m—t”, (14)

where t=|rq—r, |, 7, being the critical value of ry. We
can now verify that b—t#~Y=const (up to possible loga-
rithmic corrections) because in four dimensions the criti-
cal indices have the mean-field values B=v=1..

The relation (12) indicates that the ghost arises from
the fact that the theory is not asymptotically free. From a
more elementary point of view we can qualitatively under-
stand the vanishing of A, in the continuum limit by ap-
pealing to the nonrelativistic analog of the system, which
is an N-particle system with repulsive 3-function interac-
tions. It is well known that such an interaction in the
Schrodinger equation in three spatial dimensions does not
lead to scattering; i.e., the T matrix is identically zero.
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II. METHOD OF CALCULATION

We make Monte Carlo simulations of the field theory
on a 10* square lattice with periodic boundary conditions.
To update a site, we first flip the sign of ¢ with a proba-
bility determined by a “heat bath’ algorithm, then incre-
ment it by a random number D, with | D | <Dq. The
change is accepted or rejected according to a standard
Metropolis algorithm. The value of Dy is adjusted to give
roughly a 509 acceptance rate. The purpose of the sign
flip is to prevent the value of ¢ from being trapped in the
neighborhood of one of two possible potential minima.
For a fixed value of Ay we search for the critical point by
varying ro. For each Ag and ry, the following quantities
are calculated: (a) the propagator with J =0, which gives
the wave-function renormalization Z and the mass gap
Mia; (b) the ensemble average f={¢,,) for a range of
values of J, which yields J(f) as the derivative of the ef-
fective potential. We fit J(f) to a least-squares polynomi-
al in order to extract m,, and A,.
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FIG. 1. Evolution of the field. The field averaged over the
lattice is shown for 1000 successive Monte Carlo sweeps of the
lattice, for Ay=1000 and various values of ry. In the initial con-
figuration the field was 0.35 at all sites.
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The computations were done on a VAX 780. Typically
it took 200 sweeps to warm up the lattice. For the case
J =0, 10000—20000 sweeps were needed to obtain an ac-.
ceptable level of accuracy for the propagator. Generating
an acceptable effective potential is easier, requiring only
2000—5000 sweeps, depending on how close we were to
the critical point. The CPU time required was about 1
day for 10000 sweeps. At this rate a calculation of A, via
the 4-point function would be practically impossible, due
to the large errors introduced by the subtractions required
for connected parts. On the other hand, calculating the
effective potential proves to be a very efficient and
economical way to obtain both A, and ;.

Because of the finite size of the lattice, there is no sharp
phase transition, and m,, never actually goes to zero. To
help determine the critical point as best we could, we kept
a record of the average field over the lattice, at successive
sweeps. That is, we kept track of the evolution of the
average field. In this manner, we could see in detail how
spontaneous symmetry breaking develops when ro was
varied across the critical point. Some samples are shown
in Fig. 1 for the case Ay=1000. For ro=—150 the aver-
age field makes small fluctuations about zero. The fluc-.
tuations become more pronounced as r, is decreased to-
ward the critical point between —160 and —165. Spon-
taneous symmetry breaking is already evident at — 165,
where the field flip-flops with a period much greater than
the characteristic time scale at —160. By —175 the
period has become much greater than the observation
time, and broken symmetry becomes manifest on a macro-
scopic scale.

III. RESULTS AND DISCUSSIONS

We have carried out computations for Ag=1, 100, 1000,
o. The first value is small enough to allow a comparison
with perturbation theory, and the last limiting value cor-
responds to the 4D Ising model. Figure 2 shows plots of
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FIG. 2. Derivative of the effective potential for A;=1 for a
range of values of r that includes the critical point r.=—0.4.
Statistical errors are of the order of the size of the points shown.
Predictions of one-loop perturbation theory are shown by the
solid lines. For rg <7, perturbation theory completely fails near

d=dq: it gives a complex effective potential.
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the derivative of the effective potential for Ag=1, for a
range of values of r( that includes the critical point. Fig-
ure 3 shows various parameters as functions of 7y, for
Ag=1. In both figures the predictions of zero-loop and
one-loop perturbation theories are also shown for compar-
ison. Figures 4 and 5 give the same plots for A;=100, but
comparison with perturbation theory for this case is inap-
propriate, and therefore omitted.

The data for Z in Figs. 3 and 5 are obtained from the
effective potential. The corresponding data obtained from
the propagator via (4) are consistent with the above in the
symmetric phase, both in central values and statistical er-
rors. In the “broken” phase, however, the data obtained
via the propagator have such large errors as to render
them useless. This demonstrates the efficacy of the effec-
tive potential method.

In the weak-coupling case Ag=1, the predictions of
one-loop perturbation theory compare well with the nu-
merical results away from the critical point, but they

‘break down near the critical point. For example, pertur-

bation theory yields a complex effective potential, whereas
the actual effective potential is always real. The one-loop
perturbation theory completely fails in its prediction
Z =1. As we can see in the figures, Z depends on rg, and
vanishes at the critical point.
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FIG. 3. The following quantities are plotted against », for
Ao=1: {¢pu? =vacuum expectation of the field in lattice units,
M= the mass gap in lattice units, b ={¢, ) /m (ratio of re-
normalized field to physical mass gap), Z=wave-function re-
normalization constant, A,=renormalized self-coupling con-
stant. Also shown are predictions of the zero-loop (dashed lines)
and one-loop (solid lines) perturbation theory. Note that b is

discontinuous at the critical point, while ¢y is continuous.
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FIG. 4. Same as Fig. 2, but for A;=100, Perturbative results
are not included because they are not applicable.

From the plots in Figs. 3 and 5 we see that (¢, ) and
My both vanish at the critical point, but the ratio b is
discontinuous, approaching zero from one side, and
nonzero from the other. This defines the two phases of
the system in the continuum limit, a symmetric and a
symmetry-broken phase. We shall return shortly for a
closer look at the behavior of b in the symmetry-broken
phase.

In Fig. 6 we plot the renormalized coupling A, as a
function of my,,, for various values of the unrenormal-
ized coupling Ay. The origin corresponds to the continu-
um limit. Separate plots are given for the two different
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FIG. 5. Same as Fig. 3, but for Ag=100.

phases corresponding to rg>7, and ry<7.. We see that
the limiting curve with Ap=co divides the plane into two
parts, and no point falls to the left of it. This clearly
shows the ghost point, the smallest possible 1, for fixed
renormalized coupling, where the bare coupling diverges.
The forbidden region is presumably ghost land, to which
unfortunately computers are still denied access.

Figure 7 shows results for the three-particle vertex in
the symmetry-broken phase. This parameter is propor-
tional to A, in lowest-order perturbation theory, but in
general it might be an independent quantity. Here we
check that it indeed vanishes in the continuum limit as ex-
pected, thus explicitly demonstrating that in the continu-
um limit there is neither three-particle nor four-particle
vertex.

The boundary of the forbidden region in Fig. 6 is the
locus of the ghost point corresponding to various values
of A,. These values, the closest possible approach to the
continuum limit for a given A, >0, are larger from those
predicted by perturbation theory in (12) by orders of mag-
nitude. That is, on the scale of Fig. 6, perturbation theory
would have A, drop to zero precipitously near the contin-
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FIG. 6. The renormalized coupling A, as a function of 1,
which is proportional to the lattice spacing. The family of data
points refers to different values of the bare coupling: Ag=1, 100,
1000, . The limiting case 7o= o corresponds to the 4D Ising
model. At fixed A,, the lattice spacing cannot be made smaller
than a minimum number, the ghost point (at which a ghost state
presumably appears). The only way to reach the continuum
limit is to “slide down” the limiting Ising curve (or any curve in
the region below it) toward A, =0. Ninety percent of the errors
in the data come from uncertainties in the extraction of my,, or
Z from the propagator.
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FIG. 7. The renormalized three-particle vertex in the
symmetry-broken phase, in plots similar to those of Fig. 6 for
the four-particle vertex.

uum limit. Instead, our results show a gentle decrease.
The reason is that the vanishing of A, in Fig. 6 is caused
mainly by the fact that Z—0, whereas perturbation
theory, even with the summing of all one-loop graphs,
gives Z =1. ‘

In the present theory the value of the parameter b is
without physical significance. Nevertheless we shall ex-
amine it in greater detail, for it may give an indication of
whether the Higgs mechanism still works when the scalar
field is coupled to other fields, despite the fact that A, =0.
To this end we exhibit b in Fig. 8 as a function of m,, in
the symmetry-broken phase, for various values of Aq. It
appears that b extrapolates to different values in the con-
tinuum limit, depending on Ay This would indicate that
the vacuum expectation of the field sets an arbitrary mass
scale independent of m1.

However, the numerical data cannot rule out the possi-
bility that b diverges in the continuum limit—an expected
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FIG. 8. Dimensionless ratio between the vacuum field and
the renormalized mass as a function of my,,, which is propor-
tional to the lattice spacing. The solid lines are free-hand draw-
ings to guide the eye.
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FIG. 9. Perturbation theory predicts that the quantity plotted
approaches a constant independent of A in the continuum limit.
The data seem to be at variance with that prediction.

behavior if one believes in the relation b <A /% from
perturbation theory. To test this, we plot /% as a func-
tion of my,, in Fig. 9, for various values of A;. The func-
tion is remarkably constant for Ay=1; but for larger
values of Ag it appears to approach zero in the continuum
limit. We take this to be tentative indication that b is a
parameter independent of A, and that Ay is not an ir-
relevant parameter of the theory.

IV. CONCLUSION

The existence of a phase in the continuum limit with
broken symmetry suggests that, even though the renor-
malized self-coupling is zero, a gauge field coupled to the
scalar field can acquire mass through the usual Higgs
mechanism. In fact Coleman and Weinberg® have verified
this in perturbation theory. The answer is by no means
certain, however, because the self-consistency of the per-
turbative treatment relies on the implicit assumption
A, >0, which is not true.

The question of generating fermion masses remains
equally open. If we couple a fermion to the scalar field
through the Yukawa coupling gzZqu/; we might expect to
generate a mass term g,{¢)iysp. But the renormalized
Yukawa coupling g, may vanish in the continuum limit,
since it is not asymptotically free. Then, again, this may
be compensated by the fact that b actually diverges. On

-top of all the uncertainty, we must add the further caveat

that the mass term above is no more than a naive expecta-
tion suggested by perturbatlon theory.

In closing we must draw particular attention to the fact -
that the resulting field theory in the continuum limit is
drastically different from what we have been conditioned
to expect by perturbation theory. In the phase with bro-
ken symmetry, the “Higgs”-boson mass m is arbitrary,
even though A,=0. Perturbation theory would have us
erroneously believe that m is propottional to A,'”2. The
lesson we learn is that it is futile to make conjectures on
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generating masses for gauge fields and fermions. First of
all, the perturbative connection between coupling con-
stants and masses may not hold. Second, introducing new
couplings may drastically change the system. These phys-
ically relevant problems will have to be studied by nonper-
turbative methods and we are continuing our computa-
tional program to address them.
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