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Path-integral Monte Carlo simulation of the second layer of“He adsorbed on graphite
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We have developed a path-integral Monte Carlo method for simulating helium films and apply it to the
second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite interactions that are
found from potentials which realistically describe the interatomic interactions. The Monte Carlo sampling is
over both particle positions and permutations of particle labels. From the particle configurations and static
structure factor calculations, we find that this layer possesses, in order of increasing density, a superfluid liquid
phase, a/7x /7 commensurate solid phase that is registered with respect to the first layer, and an incom-
mensurate solid phase. By applying the Maxwell construction to the dependence of the low-temperature total
energy on the coverage, we are able to identify coexistence regions between the phases. From these, we deduce
an effectively zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and
torsional oscillator measurements, and demonstrate that the experimentally observed disruption of the super-
fluid phase is caused by the growth of the commensurate phase. We further observe that the superfluid phase
has a transition temperature consistent with the two-dimensional value. Promotion to the third layer occurs for
densities above 0.212 atomfAin good agreement with experiment. Finally, we calculate the specific heat for
each phase and obtain peaks at temperatures in general agreement with expsibdé3:182@09)00705-5

. INTRODUCTION librium density of 0.1750 atom/A a \/7x /7 commensu-

Helium adsorbed on graphite provides an excellent realrate triangular solidC) at 0.1996 atom/A and an incom-
ization of a number of nearly two-dimension@D) phenom- mensurate triangular solilC) phase for densities above
ena. The helium film grows in a succession of distinct,0.2083 atom/A. All coverage values are for the total ad-
atomically thin layers as the density of the adsorbate insorbed film. Using the Maxwell construction, we determine
creases, and as many as seven such layers may be obserg€gXistence regions between these phases, namely, the gas-
on a well-prepared substrat€onsequently, it is possible to llquid  (GL),  liquid-commensurate  solid (LC), ~and
investigate the evolution of each layer's phase diagram. AomMmensurate-incommensurate s¢@IC) phases, at effec-

number of experimental methods have been used for thil

%vely zero temperature. Our calculated phase diagram con-
purpose, including specific heat measurem&ritd neutron irms the idea that the superfluid phase is interrupted by the
scatterind® torsional oscillator measuremerifst’ and

formation of the commensurate soti**We further show
third soundt The phase diagrams of the layers nearest th

n‘gé:at the liquid phase behaves similar to a typical two-
. . imensional superfluid. We also calculate the specific heat
su_bstrate are rich. Ewdence_has been found for self-bOL_J r each phase F;:md find peaks in general agreen?ent with the
fluid phases that are superfluid at low temperatures, ava”e.g‘xperimental values. Finally, we observe promotion to the
of registered solid structures, and_lncommen_surate solighirg layer at a coverage in good agreement with experiment.
phases. These phases and the coexistence regions that SeRreliminary report of some of our findings has been pub-
rate them are governed by a delicate balance of quantufshed elsewhere® The present paper expands and extends
effects, such as large zero-point motion and particle permugis work.
tations, with adatom and substrate interactions. This paper is arranged in the following manner. Section
Much of the early experimental work on the helium- | A provides an overview of what is known about the second
graphite system concentrated on the first adsorbed layelayer from experiments. In Sec. | B, we review previous
Several reviews of this work are availaBlg!?On the other  simulations of helium films and the related simulation of
hand, until recently, relatively little information was avail- two-dimensional helium. We point out that none of these
able on the phases of the second and higher layers. Th&mulations, while interesting in their own right, exhibit all
situation has changed dramatically over the last severdhe phenomena observed in the second-layer phase diagram.
years. Extensive heat capacity measureniéns$ the first ~ Section Il presents the details of our simulation method,

six layers have been performed, and superfluidity in théNhiqh includes particle permu_tations_and realistic particle-
higher layers has been detected by both torsionaparticle and particle-substrate interactions. The results of our

oscillator®*! and third sound measuremehtJaken to- calculations are presented in Sec. lll. We demonstrate the

gether, these experiments indicate that the second layer hag#istence of each phase, explain the construction of the
unique phase diagram, with superfluid, commensurate soligecond-layer phase diagram, and present calculations of
and incommensurate solid phases. No other layer exhibits afifoperties for each phase.
three phases.

Motivated by these experiments, we have undertaken a
path-integral Monte Carl¢PIMC) simulation of the second Specific heat measurements have formed the basis for
adsorbed layer. We identify a liquid) phase with an equi- constructing the first helium layer's phase diagram, but until

A. Experimental overview
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recently, relatively little work was done on the second layerheat capacity measurements or the liquid equilibrium density
with a couple of exceptions. Bréfzexamined this layer un- of purely two-dimensional heliurt®. The range of superfluid
der compression of the third and obtained evidence for theoverage also provides additional, although indirect, evi-
melting of the incommensurate second layer solid. The londence that a solid phase begins to form above
density range of this layer was explored by Polanco an®.187 atom/A. Above this density, the superfluid signal
Bretz!® They determined that the compression of the firstvanishes and does not reappear until the third layer. This
layer by the growth of the second must be taken into accoundisappearance coincides almost exactly with the growth of
in order to determine the phases at low second-layer densihe supposed commensurate solid phase. Apparently, the
ties. They interpreted their results to indicate that the secongrowing solid phase disrupts the connectivity required to de-
layer has gas-liquid coexistence at low coverages. tect superfluidity.

The heat capacity measurements of Greywall and Busch
provide the most extensive investigation of the second-layer
phase diagram. They find evidence for four phases: gas, lig- B. Previous simulations
uid, commensurate solid, and incommensurate solid. These

phases are identified in the following manner. At low densi- . . .
ties, a low, rounded peak occurs in the heat capacity. Thilelp interpret the experimental results discussed above. The

has previously been associated with the liquid pHaset ~ Simplest way to treat a helium layer is as a purely two-
low temperatures, the heat capacity depends linearly on deflimensional system, for which there are both zero tempera-
sity roughly between 0.13 and 0.16 atorf/Awhich is a ture and finite temperature calculations. Whitloekal.
requirement for coexisting phas¥sThus this region can be used Green’s function Monte Carlo to calculate the equilib-
identified as a gas-liquid coexistence region, with the gagium liquid coverage at zero temperature, obtaining
phase having negligible density at the lowest temperature§.04356 atom/A They also determined that 2D helium
Evidence for liquid-commensurate solid coexistence can bwould solidify, and that the liquid and solid phases coexisted
found between 0.187 and 0.197 atorfVAn this region, in  between 0.0678 and 0.0721 atorA/Avore recently, Gor-
addition to the low peak associated with the liquid phaseglillo and Ceperle$f have investigated the 2D phase diagram
another, larger peak at a higher temperature can be observet.finite temperatures with path integral Monte Carlo. Their
The location of the larger peak is independent of coveragdpw-temperature results are consistent with the zero-
suggesting that it may be associated with the melting of demperature calculations. They also determined spinodal
commensurate solid phase. Greywall suggéstedt this lines and found a finite density gas phase at temperatures
phase corresponds to thé7 X 7 commensurate structure above 0.75 K. The direct comparison of these results with
proposed earlier foPHe on graphité/*8A third coexistence the second helium layer is limited, since the 2D calculations
region occurs between 0.2030 and 0.2080 atdm#ihere do not include any substrate features and do not allow the
the commensurate melting peak is accompanied by anothdiim to spread perpendicularly. As a result, no commensurate
lower temperature peak. This second peak is associated wifi®lid phase or layer promotion can occur.
the melting of an incommensurate solid phase. For coverages Simulations of helium films using realistic models for the
from 0.2080 to the beginning of third layer promotion at graphite substrate have also been performed. Abraham and
0.212 atom/A&, the incommensurate melting peak is the soleBroughtorf* used a path-integral Monte Carlo simulation to
feature in the specific heat measurements. Unlike the pedRvestigate the first layer ofHe on graphite. They were able
associated with the commensurate phase, the incommensig-identify fluid, commensurate solid, domain wall liquid and
rate melting peak is temperature dependent, occurring &olid, and incommensurate solid phases. Notably, they deter-
abou 1 K at thelowest incommensurate densities, but in- mined that particle permutations were unimportant for the
creasing to about 1.5 K at the density where third layer profirst layer for the coverages they investigated, so there was
motion begins. no possibility for superfluidity in the simulation. Experimen-
The principal limitation on using the heat capacity mea-tally, the phase diagrams foiHe and “He at the densities
surements to determine the phase diagram is that they cdhey simulated are nearly identical, so it reasonable to con-
only identify phases indirectly, so additional confirmation isclude that their simulation results also apply te. This
desirable. Direct evidence for the incommensurate solidvork was extended to a simulation of the second adsorbed
phase comes from neutron scatterfigbut no similar evi-  layer of *He at the\/7x 7 commensurate density. Particle
dence exists for the commensurate phase. Apparently, thgermutations were again neglected. It was established that
incommensurate phase can be resolved in these experimeitit® second-layer commensurate phase was stable for tem-
only after some additional compression by the third layerperatures below 1 K. Very recently, Whitlogk al?? i

The results of Monte Carlo calculations are often used to

inves-
Consequently, there is no scattering evidence for the contigated the ground state properties of the first helium layer
mensurate solid, which is replaced by the incommensuratgsing a laterally averaged potential for the helium-graphite
solid before promotion to the third layer begins. interaction. They determined the equilibrium liquid coverage
Further insight into the second-layer phase diagramaind the onset coverage for solidification in the first layer, and
comes from the torsional oscillator measurements of Crowelfletermined the coexistence region between these two phases.
and Reppy®! They detected superfluidity at intermediate They also estimated completion densities for the first and
densities, which incidentally provided direct evidence thatsecond layers, obtaining agreement with the experimental re-
the second layer has a liquid phase. Questions remain abostilts. They did not take the corrugations of the graphite sub-
the liquid phase, however, since the apparent onset density $rate into account and so did not observe {8 \/3 com-
somewhat higher than would be expected from either thenensurate solid phase that occurs in the first layer.
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Complementary to the calculations discussed above is thiérst-layer atoms on the sites of a triangular lattice at a fixed
work by Clementset al?®>~? using the hypernetted-chain height above the substrate. This allows us to treat the helium-
Euler-Lagrange theory. For 2D helium, this method repro-graphite correlations in a much simpler manner, since the
duces the Monte Carlo resuitgor the liquid phase and pro- atoms on the second layer are not effected by the corruga-
vides a direct calculation of the chemical potential, thirdtions of the graphite substrate. By not sampling first-layer
sound, and spinodal points. When applied to layered sysconfigurations, we are also able to increase the number of
tems, the theory gives liquid coverage ranges and layeringecond-layer atoms in the simulation. In turn, this allows us
transitions but is not capable of investigating solid phasesto scan second-layer coverages in a sufficiently fine grid to
For this reason, these calculations are restricted to the thirdbserve coexistence regions. Having a fine grid is particu-
and higher helium layers, and assume that the first two layedsrly important for high second-layer densities, since
form an inert, featureless solid. Also complementary are théhe liquid-commensurate solid and commensurate-
path-integral Monte Carlo calculations of Wagner andincommensurate solid coexistence regions exist over rela-
Ceperley®?” for “He and hydrogen films on crystalline hy- tively narrow ranges.
drogen. In their helium film simulation, superfluidity and  The trade off for using this approach is that we ignore
layer-by-layer growth occurred, but the film did not solidify. zero-point motion in the first layer. This will cause the sec-

As we discussed in Sec. | A, the second layef*de on  ond layer to form closer to the first layer and have a narrower
graphite is unusual in that it is known experimentally to havedensity profile® Ignoring the response of the first layer to
both a superfluid liquid and two solid phases, one commenthe second is also known to lead to a lowering of the energy
surate and the other incommensurate with the first layer. Thef a layer of helium adsorbed onto solid hydrogémow-
simulations discussed above are interesting in their owrmever, experimental results indicate that neglecting zero-point
right, but none have exhibited the three phases seen in theotion in the first layer of helium on graphite atoms is a
second layer. In order for a simulation to produce thesgeasonable approximation. First, the Debye temperature of
phases, it must possess three features. First, the presencetlud solid first layer is greater than 50 K, and it may be treated
superfluidity means that particle permutations must be inas a 2D Debye solid up to 3 #. In our simulation, the
cluded in the simulation. This is because superfluidity resultéemperature is as low as 200 mK, and never exceeds 2.2 K,
from permutation cycles of infinite lengffi.It is also ex-  so the first layer is relatively stiff. Second, although the first
pected that the boundaries of the phases will be effected biayer is known to be compressed by the growing second
permutations. Second, the commensurate second-layer sol@lyer, this is most important at low second-layer densities,
is found to be registered with respect to the first layer, so thgust after second-layer promotion begiisThe coverages
effect of first-layer atoms must be taken into account. Thirdstudied by Polanco and Brétzare below the range of our
the attraction of the substrate and first layer on the secongimulation. As we shall see, our approach is sufficient to
must be implemented correctly so that the commensurateeproduce many of the observed features of the second layer.
phase is replaced by the incommensurate phase before pro-
motion to the third layer begins. In the following section we
outline our simulation method, which contains the necessary

features to exhibit these three phases. We wish to study the problem of a quantukaparticle
system in the presence of a substrate. The Hamiltonian for

this system may be written as

A. Path-integral representation of the partition function

II. SIMULATION METHODS AND DETAILS

N N N

The path-integral Monte Carlo simulation is a powerful 32 2 _
tool for studying quantum systems at finite temperatures. By H=—# /2mi§1 Vi +i2<j vaa(lry rj|)+i21 vsuli),
incorporating sampling of particle configurations and particle 1)
permutations, both normal and superfluid helium can be
simulatec?® If a substrate is added to the simulation, a quanwhereuv,g is the spherically symmetric two-body potential
tum film will result. The purpose of this section is to describebetween particles, ang,, is the external field produced by
the modifications that are necessary to add the effects of thfye substrate. The two-body potential for helium is accu-
substrate into the simulation. The result will be a simulationrately represented by the Aziz potentialPrevious path-
method that is capable of exhibiting superfluid, commensuintegral simulations using this potential have proven quite
rate solid, and incommensurate solid phases, as well as layeapable of reproducing numerous properties of liquid
promotion. helium?%33-3 The potential between helium and graphite

Central to our PIMC method is the approximation usedhas been investigated by Carlos and CBlelsing helium-
for the high temperature density matrix. It is essential thascattering data, they evaluated several forms for the helium-
the starting temperature be made as low as possible so thgtaphite potential. In order to write this potential in a pair
permutations will be accepted. As we will discuss in thisform, anisotropic terms that effectively enhance corrugation
section, the graphite substrate complicates a straight-forwanaust be included. Of the potentials examined, an anisotropic
extension of the starting approximation used in bulk simula6-12 Lennard-Jones potential was found to be preferable,
tions. For this reason we will not include sampling of the although the form was not uniquely determined. For helium
first-layer atom configurations in the calculation and will atoms more than 4 A above the substrate, corrugations are
concentrate instead on the second layer. negligible, and the anisotropic potential can be replaced by a

It is essential to include the effect of the first layer on thelaterally averaged potential that depends only on the height
second, however. We approximate this effect by placingf the atom above the substrate.
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The statistical mechanics of quantum systems is governeldw as possible. This makes sampling the permutations fea-
by the density matrix and the partition function. For a systensible and speeds the equilibration of the ring polymers by
of N bosons at an inverse temperatyethe density matrix —avoiding excessively long chains. The high-temperature den-
is given by sity matrix we introduce below can be used with starting

temperatures as low as 40 K. We thus only have to use, for
. 1 _ , instanceM =40 to simulate a system at 1 K.
p(RR :B):m; (Rle”#MPR"), (2) We approximate the high temperature density matrix as a
product of the exact free particle solution, an effective two-
whereR and R’ are two configurations oN bosons. The body interaction found from the exact solution for two inter-
sum overP is over all permutations of particle labels, and acting helium atoms, and an effective external interaction
PR’ is one such permutation. Permutations lead directly tdound from the exact solution for a single atom in a graphite
the off-diagonal long-range order that produces superfluiditypotential:
The partition functiorZ is found by integrating the diagonal
elements of the density matrix

N
p(RR; ) ~I1 pfri,r'i;7)
1 =1
Z= 2 f p(R,PR,B)d°R. (3)

P

N
. » . . . XH P
Evaluating the partition function for interacting systems at i=1
very low temperatures is complicated by the fact that the N
kmeyc and potential terms in the exponent of the_ densny XH. Z?e(fij T, (5)
matrix cannot be separated, so the form of the density matrix i<
is not known in, for instance, the configuration space repre-

sentation. We can avoid this problem by insertMg-1 in-  wherer;;=r;—r;. The termsp™® phe, andpS" will be dis-
termediate configurations into E¢3) to obtain the path- cussed below. This approximation assumes that three-body
integral formulation of the partition function contributions are negligible and that the helium-helium and
. helium-graphite interactions can be decoupled. The former
_ - 3. 43 3 has been shown to be valid for bulk helium systems with
z Nl; f fd Ry---d"Ry—1d°R starting temperatures as low as 40 K.

The termpflree is the density matrix for a free particle of

Xp(RR1;7)p(R1,R2;7) - - p(Ry-1,PR7), (4 massm, given by

where 7= 8/M. The problem of evaluating the partition

function at a low temperaturd~* has been replaced by the PYe(r 17 =Ny exe — ar(r—r")2IN7], (6)
problem of multiple integrations of density matrices at a

higher temperature 1. The advantage of this is that the where\;=\2x7%%/m is the mean thermal wavelength for
high-temperature density matrices may be approximated. Ithe temperature / The helium-helium ternpb® is the in-
practice, the integrals appearing in E4) cannot be directly teracting part of the solution to the density matrix for two
evaluated for systems of strongly interacting particles. Montéelium atoms. This can be found by separating the density
Carlo sampling may be used instead to generate configuranatrix into center-of-mass and relative components. The

tions and calculate observables. density matrix for the relative coordinates is a solution to
Equation (4) lends itself to an interesting visualization.
The N quantum particles can be thought of Msnteracting apHe

classical ring polymers, each withl beads. Sampling the — ——(r;; ,r'i; ;7)=[(A2/m)VZ=V"e(r;))]p"e(r;; 1" ;7).
partition function then corresponds to sampling the possible )
configurations of these polymers. Furthermore, particle per-

mutations may be introduced into the Monte Cgrlo me.thpdThis equation is equivalent to that satisfied by the time evo-
by splicing together two or more polymer chains. This i

. . lution propagator in imaginary time. We solve this equation
known as the polymer isomorphism. bropag ginary g

using the methods discussed by Cepefferiefly, the den-
sity matrix can be expanded in a series of partial waves and
B. Approximating the density matrix the expansion coefficients are found by using the matrix-

In order to use Monte Carlo sampling on the partitionsquar_ing methpd. The_ result-ing solqtion is used to define the

function, we must first provide a starting approximation for effective  helium-helium interaction U"(r;; ,r';j ; 7)=

the high-temperature density matrices that appear in the in-In(ph®) where p5e=p"¥p™e This is a six-dimensional

tegrand of Eq(4). The simplest starting approximation is to function, but the spherical symmetry of the density matrix

use a very largéM, which allows us to separate the density allows us to approximate it as a series of one-dimensional

matrix into kinetic and potential energy terms. This is thefunctions. This greatly reduces the memory requirements and

semiclassical approximation and is exact in the limft  increases the speed at which the density matrix can be evalu-

— o0, according to the Trotter theorem. For superfluid heliumated for a particular configuration.

systems it is necessary to go beyond the semiclassical ap- The density matrix for a single helium atom above a

proximation so that the starting temperature may be made agaphite substrate is a solution to



3806 MARLON PIERCE AND EFSTRATIOS MANOUSAKIS PRB 59

Gr 10.0

%(r,r';T)=[(ﬁzlzm)VZ—VGr(r)]pfr(l’,I";7'), ®)

where V®'(r) is the full graphite potential. The helium-

graphite terrrf;fr is the interacting part of the solution to this
equation. Near the substrate, the potenti@l is anisotropic.

A straight forward solution to Eq8) is to solve it at grid
points within a graphite unit cell using, for instance, a three-¢ 99
dimensional implicit method with periodic boundary condi- =

tions at the edges of the cell. The resulting six-dimensional

function can be approximated as a series, expanding aroun

5.0

50 | T |

the diagonal elements, but this still gives a series of three-

dimensional functions. This greatly complicates Monte Carlo

simulations of the first-layer atoms using E§), since stor-

age requirements become large and evaluating the densit ~ -10.0, 30 20 50 6.0

matrix by interpolating from three-dimensional tables be- 2(A)
comes excessively burdensome. Thus, simulating the first ad-
sorbed layer using a high-temperature density matrix is a FIG. 1. The diagonal and lowest-order off-diagonal terms of the
much more complicated problem than simulating bulk he-expansion ofJ €', Eq.(11). The semiclassical approximation is also
lium. One could always avoid these problems by simp|yshown. The laterally averaged potential was used and
starting at a high enough temperature so that the semiclassi0-025 K.
cal approximatioft can be used for atoms near the substrate,
but then getting permutations accepted becomes exceedingly The average over the two diagonal parts of the solution in
unlikely. the first term is called the end-point approximation. The
The problem becomes much simpler further above thgunctionsU ,(z) are found byy? fitting Eq. (11) to the exact
substrate, where corrugations may be ignored. The heliumsplution. One simply terminates the series when the approxi-
graphite potential can be found by laterally averaging oveination is sufficiently close to the exact solution. Results for
the surface, eliminating the-y plane periodicity that com- the diagonal solution and the first two expansion terms are
plicates the solution near the substrate. The helium atom e%hown in Fig. 1. The off-diagonal terms become negligible
periences only a-dependent potential, so E8) can be for z>4 A. The diagonal solution can be compared with the
solved by separating?'(r,r’,7) into x, y andz components.  semiclassical approximation. Figure 2 compares the exact
The x andy components are one-dimensional, free-particlesolution for off-diagonal elements to the expansion, @d),
density matrices. The solution fpi(x,x";7), for instance, is and the end-point approximation, L#/(z) + 7V(z')].

p™x,x"; 7) =\, texd — m(x—x")2IN]. (9)
C. Sampling the density matrix
A similar solution exists fop(y,y’; 7). Thez dependence is

found by solving the parabolic partial differential equation With the first layer frozen, the density matrix, B&), for

the active second layer atoms can be written in the fprm
. 2 2] 2,2 _\/Cr , =exp(-S). where
75228 =[(a%2m) 9% 92" == (2)]p(2,2"; 7),

(10) 2.0 T
whereV®(z) is the laterally averaged potenti&lThis can 10 ]
be solved by matrix squaring, or by an implicit methidd.

The initial condition is that the density matrix is a delta 0.0 L +Exact |
. . . . . : —— Series
function at7=0. We define the effective interaction for the - -~ Endpoint

helium-graphite density matrix)®'(z,z";7)= —In[p(z,2’; D/
p"®¥z,z';7)]. This is still a function of two variables. In

order to make evaluating the density matrix efficient during g _

the Monte Carlo runs, we expard® as a series of one
dimensional functions. We rewrité)®(z,z')=U(z,AZ),

wherez=(z+2')/2 andAz=|z—z'|. The matrix is domi-
nated by the diagonal elements, so we expand it as a serie
about Az)%:

U%(z,z;n)+U%(z',2";7)
2

U®iz,z';r)=

+2 Un(2)(Az)?™, (11)

'
N
N

]

4.0

FIG. 2. The exact solutiot)®(z,z';7) for z/=2.82 A com-

pared with the expansion E¢L1) and the end-point approximation
using 7V.
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7(R—R’)? creases the overall acceptance rate, while decrebbigthe
S(R,R’; 7)=(3Nyf2)In(\2) + 5 opposite effect. The overall acceptance rate for the moves
Ag varies between 8% and 15%, depending on the density. Tests
Nact Nact usingl =2 at selected densities showed that the3 results
n _2 E URe(r o1’ i) had converged. The acceptance rate of multiparticle permu-
251 = Hee tations is small, between 0.2 and 0.3% in the liquid phase.
Naet Np Noct We have found that similar small acceptance rates are suffi-

NS UHe(rij i+ S sz, ) cient to obtain the superfluid density in bulk simulations.
i=1j=1 i=1

(12) D. Calculating observables

) ] The expectation value of an observab®e,can be found
wherer'ij =_|ri—rj|. The number of active and frozen helium fom the trace{A)=Z"1Tr Ap. We use PIMC to calculate
atoms is given byN,o; and Ny, respectively. In the polymer expectation values for the total energy, the superfluid den-
isomorphismSis the action for a system of interacting poly- sity, and the static structure factor. Below we give formulas

mers. In sampling the paths, we are effectively choosing befor each of these calculations for a helium film on a sub-
tween two different polymer configurations. The one with giate.

the lower action is the more favorable configuration, and is  The total energy is given by the expectation value
more likely to be chosen in a Metropolis-style acceptance

test. . . . . . 3N et W(AR)Z dUg?m duS){al
As in standard Monte Carlo simulations, the interaction E= >, +{ — > + dr + ar | (15
UMeis cut off at some maximum distaneg=min(Ly,L,), AT

whereL, andL, are the dimensions of the simulation cell. AR is the change in the particle positions between two con-
The long-range correction to the interaction felt by each parsecytive inverse-temperature slices. The tetd{¥, and

ticle is, in cylindrical coordinatesy(, 2), Ugr, are shorthand for the sums over the interaction terms in
. . Eqg. (12). Notice that the zero of the total energy occurs at

UESIZWJ n(z’)dz’f pdpUPe(r 1:7), (13)  zero second-layer coverage, where there are no active atoms.
0 Pe The superfluid density can be calculated using the wind-

_ = 2 .2 2 _ ing numberW for simulations that have periodic boundary
wherer = \p“+(z—2')%,pc=rc—(z—2')", and only diago-  gngitions. Nonzero winding numbers occur when particles,

nal elements need to be considered. The integrat(@f)  through a series of permutations, are permuted with periodic
gives the density of the system. We make the approximatiofnages of themselves. The winding number is directly re-
that the layer thicknesses can be treated as delta functiongeq to ps, the superfluid density® For a system with peri-
This is exact for the frozen first layer. The{z')=n6(z"  odic boundary conditions in the-y plane, the superfluid

—Zg) + Naed(2' — Z4¢) and density is given by
0 2
uES=zwf pdp[ngUH(r,r;m) + 120 U, rim)], pe_ MUW.LT) (16
Pe (14) P 2Bh*Nyqy

where the elementt, and L, are the dimensions of the
simulation cell.

Finally, structural information can be obtained with the
static structure factor

wheren;, and n, are the densities of the firgfrozen and
secondactive layers. The factor of one-half before the con-
tribution from the active layer is needed to avoid double
counting. A similar long-range correction is added to
dUM a7 in the energy calculation. 1

As we have emphasized, particle permutations must be S(k)=N—<P(k)P(—k)>- 17
included in simulations of superfluid helium. These permu- act

tations correspond to splicing together two or more of thewe takez to be perpendicular to the plane of the substrate,
_polymer_ rings. Th|s_spI|c_|ng can be accompllshed_by Proposgq k= (k, k). p(k)ZE_’\Lactequk. r) is the Fourier trans-
ing cyclic permutations involving one to four particle Iabelsf y : =1

: - i T orm of the density.
on inverse-temperature sliége-n relative to slicei, where
n=2' andl is the overall level of the move. The paths fol-
lowed by the permuted particles on the intermediate slices
i+1 toi+n—1 that produce the permutation are then filed As can be seen from the previous discussion, simulating
in by successively bisecting the intervato i +n. This is  helium systems below the superfluid transition is an ex-
known as multilevel Monte Carlo sampling, an extension oftremely complicated task, and it is important to verify all
the standard Metropolis method. The interested reader is rgarts of the method. We have verified our calculations for the
ferred to a recent review article on the subjéct. solution to Eqg.(7) by comparing our results to published

In our Monte Carlo runs for helium films, we take=3,  results for the Lennard-Jon&gotential and to the Aziz po-
since this gives the best balance between accepting singtential. The solution to Eq10) for the helium-graphite den-
particle and multiple particle moves. Increasingicreases sity matrix was checked by comparing the results obtained
the number of permutations that can be accepted but ddrom the matrix squaring and implicit solution methods. We

E. Testing the method
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have verified that the full Monte Carlo method outlined

above works for bulk helium systems by reproducing re-
ported values for the energy, specific heat, and superfluid
density>*3°We believe these tests sufficiently prove that our
simulation method works and can be extended to helium
films.

F. Choosing simulation cells

We perform calculations with a variety of simulation cells
that are appropriate for examining different regions of the
second-layer phase diagram. The first consideration is to
choose a simulation cell that will match the periodicity of the
first-layer triangular solid. This can be done by using a rect-
angular unit cell with a two-point basis, with unit vectors

a;=ax anda,=\/3ay, wherea=3.015 A. Two first-layer
helium atoms are located in each unit cellbgt=0 andb,
=a,/2+ a,/2. This gives a coverage of 0.1270 atorfyAhe

fully compressed first-layer densityin examining the sec-
ond layer, our first goal is to scan the layer at intermediate
and higher densities by varying the number of particles and
to calculate the total energy at each density. For these calcu-
lations we use simulation cells with dimensionsa{53a,)

and (8 ,5a,), hereafter referred to as the<® cell and the
8X%5 cell, respectively. The number of active particles in

calculations using the 83 cell ranged from 8 to 21, corre- Q
sponding to densities 0.1605 to 0.2159 atof/Kalcula-

tions with the 8<5 cell had 24 to 52 active particles, corre- —p
sponding to densities between 0.1651 and 0.2096 atbm/A a1

These two simulation cells are nearly square, which is useful
for calculating winding numbers. As will be discussed in FIG. 3. Diagram of the &5 simulation cell. The shaded circles
Sec. lll, the energy calculations for thex3 cell are used to  denote positions of the first layer atoms. The 32 open circles denote
verify that finite-size effects are not important in the 8 possible positions of atoms in the second-layer incommensurate tri-
cell. Our conclusions about the coverage ranges of variou%”gm?‘r sqlid. The arrows indicate the_ unit vectors for the solid
phases are drawn from results using theBcell. descrlped in the text. The lines emphasize the triangular structure of
At high second-layer densities, commensurate and incorrfl® solid.
mensurate triangular solid phases occur. In order to further
investigate these phases, we use simulation cells that cafensity 0.1996 atom/A corresponds to 32 and 48 active
contain an integer number of unit cells of both the first- andparticles, respectively, for these two cells.
second-layer solids. That is, the simulation cells have the A diagram of the (3;,2s,) simulation cell with the sec-
periodicity of both the first- and second-layer solids. It is alsognq |ayer atoms in/7x /7 registry is shown in Fig. 4. The
important to note that the solid phases will tend to align withjarge, rotated rectangle gives the bounds of the simulation
thex andy axes of the simulation cell. For the incommensu-cell. First layer atom positions outside this rectangle are pe-
rate solid we use a cell with dimensions%55a,), hereafter riodic images of interior atoms. Note that the location of the
referred to as the 85 cell. This cell can accommodate 32 origin is arbitrary. It is not necessary, for instance, to place it
second layer atoms in an equilateral triangular lattice. A diagt a high symmetry point of the first-layer lattice, such as
gram of a second-layer incommensurate solid in the55  gyer a first-layer atom or at a potential minimum. The essen-

cell is shown in Fig. 3. The second-layer solid is incommen-ia| requirements for the existence of the partially registered
surate with respect to the first since no supercell with dimensplid are that once the origin is chosen, all of the two-

sions less than the minimum dimension of the simulation bO)@imensiona] space can be divided up into periodica"y re-
can be drawn in which both first- and Second'layer atoms argeated Super|attice unit Ce](superce”% and that the rela-
periodically repeated. tionships of the first- and second-layer atoms to each other
The simulation of the\7x \/7 triangular commensurate and to the supercell are the same in every supercell. We have
solid presents an additional problem since this structure ighosen the origin so that the second-layer atoms can be used
rotated with respect to the first layer. This triangular solidto divide up the rectangle into supercells. Thésemitive)
can be regarded as having a rectangular unit cell with a foursupercells are the equilateral parallelograms formed by the
teen point basis. The unit vectors for this solid f&2a;  heavily shaded lines in the interior of Fig. 4. They can be
+b, and s,=—2a,+a,+b,. Note that|52|=\/§|sl| and seen to exactly fill the rectangle. Second layer atoms are
|s|=7|a],i=1,2. We use simulation cells with dimensions located at the four corners, on each of the four sides at the
(2s,,2s,) and (35,2s,) to identify the solid configuration midpoints between the corners, and at the center of each
and calculate the static structure factor. The commensuratupercell, so there is a four-point basis of second-layer atoms
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FIG. 4. Diagram of a simulation cell used for th@x 7 solid.
The dimensions are €3,2s,). The shaded circles denote positions
of the first layer triangular solid. The open circles denote possible
positions of the second layer registered solid. The arrows indicate.
the unit vectors for the solid described in the text. The lines empha-
size the triangular structure of the solid. The heavily shaded lines

indicate the\7x 7 supercells.

in each cell. The positions of the first-layer atoms can also bé

seen to be periodically repeated in every supercell.

Ill. RESULTS

A. Identification of phases

Experimentally, there is evidence for liquid, commensu-
rate solid, and incommensurate solid phases in the seco
layer. We now describe the identification of all three phase

in our simulation.

To find the liquid phase, we are guided first by the tor- 1.5 ' ' '
sional oscillator measurements, which detect a liquid phase
between 0.174 and 0.187 atom/AWe also find evidence
that densities in this range are liquid in our simulation. Fig-
ure 5 shows a snapshot of a typical liquid density. The
second-layer atoms obviously do not possess spatial order 1.0 r
ing, and the configuration covers the entire surface. More
direct evidence that the system has a liquid phase comez
from that static structure factor. Figure 6 shows the result of®
a calculation, which is typical of a self-bound liquid, at the

coverage 0.1860 atomfA

Commensurate and incommensurate solid phases can t
identified by a similar procedure. A particularly nice feature
of PIMC is that these solids form on their own, without any
modifications to the high-temperature density matrix, Eq.
(5). In contrast, previous variational calculations have used 0.0 ‘ ' ‘ ' '
different trial wave functions for the liquid and solid
phases?® This can be avoided by using a shadow wave func-
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FIG. 5. Snapshot of a liquid configuration at 0.1778 atofn/A
found using the X3 simulation cell with twelve active particles
and T=200 mK. Large circles indicate frozen first-layer atom
Sites. The instantaneous configuration of the second-layer atoms is
indicated by the small circles.

As demonstrated previously,we have observed thg7
X /7 commensurate solid phase in our simulation for tem-
peratures below 1 K. The structure of this phase was deter-
mined by examining snapshots of the configurations gener-
ated by the simulation. Particle paths of the second layer
atoms were observed to localize around tfiex 7 lattice
sites shown in Fig. 4. We note further that we do not bias the
simulation of this solid by beginning the configuration at the
commensurate lattice sites. The existence of the incommen-
r%Jrate solid, which occurs at a higher density than the com-
énensurate phase, has also been demonstrated. A snapshot of

0.5 r

0.0 1.0 2.0 3.0 40 5.0 6.0
k(A™

tion, but such calculations have not been performed for two- FIG. 6. The static structure function for the liquid phase at the

dimensional helium or helium films.

density 0.1860 atomAand T=500 mK with 26 particles.
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FIG. 8. (8) Summary of phase boundaries determined from ap-
plying the Maxwell construction to the total energy of the B cell.
The phases are liquid-g&s+G), liquid (L), liquid-commensurate
. X solid (L+C), commensurate solid(C), commensurate solid-
for (a) the incommensurate solid at 0.2083 atofhénd 0.67 K incommensurate solidC+I1C), and incommonsurate solidC). (b)

with 32 particles, and(b) the commensurate solid at 0.1996 . ;
Th ticle for the>x&3 I d 8x5
atom/& and 0.50 K with 32 particles. The errors are the size of the © energy per particie for the (circleg an (squares

cells.
symbols.

FIG. 7. The static structure factor calculated in (&) direction

this configuration generated by our simulation can be foundprevious section. This LC coexistence occurs from 0.1905 to
in our previous publicatioh® This phase matches the dia- 0.1970 atom/A, and is followed by the commensurate
gram shown in Fig. 3. We identify this phase as incommenphase between 0.1970 and 0.2032 atom/Fhe incommen-
surate because no supercell with dimensions less than tlsirate solid phase begins to form above 0.2032 atérahl
minimum simulation box dimension can be drawn that hashere is CIC coexistence until 0.2096 atorfi/A\bove this
both first- and second-layer atoms periodically repeated, igensity, until layer promotion to the third layer at
contrast to the commensurate phase. 0.212 atom/A, the system is completely in the incommen-
The snapshots of the two solids are useful for visualizingsrate phase. These results are summarized in Fag. 8
their structure but are not actual_ tests for their existence. A Before discussing how these ranges were determined, we
direct measurement of correlation comes from the statiGyqyq first like to demonstrate that finite-size effects play an
structure fact_or. Resu!ts for thes_e calculations in (&) unimportant role in the energy values used in the Maxwell
reciprocal lattice direction for the_ incommensurate and COMy o nstruction. Figure®) shows the energy per particle found
mensurate phases are shown Figs) and 1b). The struc- using the 85 and 5x 3 cells. Almost all of the points cal-

ture factor is normalized t,y. The locations of these ulated at similar densities in the two cells are consistent
peaks give the correct lattice spacings for the diagram . . o . '
he primary “size effect” is the limitation on the available

shown in the Figs. 3 and 4. The peak for the commensurat - . . : : .
solid occurs at 1.82 AL, which gives the correct lattice ensities which may be examined for a given simulation cell.

constant, 3.99 A, for the’7 x \/7 triangular solid. Likewise, Phase ranges are determined by using the Maxwell
the peak for the incommensurate solid occurs at 1.9, A double-tangent construction, which identifies unstable re-

corresponding to a lattice constant of 3.76 A, which is thed'ons assoma_ted with the coeX|stence_of two phases. A co-
correct lattice spacing for a triangular solid at existence region at zero temperature in the thermodynamic

0.2083 atom/A. limit will have a total ground state energy that is the
weighted average of the two constituent phases’ energy val-
ues. In Monte Carlo simulations the energy in the coexist-
ence region will lie above the coexistence line, either be-

Having identified the liquid, commensurate solid, and in-cause the system remains in an unphysical homogeneous
commensurate solid phases of the second layer, we now wisfiate or because creating the phase boundary has a finite
to find the boundaries for each of the phases. We are able ¥nergy cost® We may thus identify a coexistence region as
identify the following density regions at low temperature. At the maximum range of densities in which all the intermediate
low second-layer coverages, 0.1270 to 0.1750 atémide  energy values lie on or above a line connecting the values at
system is in a gas-liquid coexistence region, which consistthe end points. We note that this version of the Maxwell
of a liquid droplet and a zero density gas. The equilibriumconstruction is somewhat different from  other
density for the liquid is 0.1750 atomfA and the layer is applications->?>?°which apply the Maxwell construction to
uniformly covered by a liquid phase from 0.1750 to the free energy dependence on atomic diezerse density
0.1905 atom/A. Above this density, the liquid coexists Our method is appropriate for simulations with constant area
with the \7x \/7 commensurate solid phase discussed in thend varying particle number.

B. T=0 phase diagram
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50| ‘ ' ' ' T ] energy per particle, which occurs between 0.174 and
' 0.178 atom/A in the 8x5 cell. The besj? parabolic fit to
- the energy data around the minimum givepg
=0.1750(6) atom/A for the density of minimum energy.
The number in parenthesis is the error in the last digit. A
similar coexistence line can be identified in thx 3 cell,
Fig. 9. We find thafpy=0.17526), sofinite-size effects on
i the liquid density are small. At sufficiently low temperatures,
this liquid phase will become superfluid, as will be discussed
7 below. All measured energy values for the densities between
0.1270 atom/A andp, lie above the coexistence line, so the
system is in gas-liquid coexistence for this density range.
The density of uniform liquid coverage, can be com-
pared to experimental results. For<0.2 K the second-
layer heat capacity measureménghow a probable gas-
liquid region roughly between 0.13 and 0.16 atom/A
Within the resolution available from the data, this phase can
FIG. 9. The total energy found using the<3 simulation cell  terminate anywhere from 0.1600 atord/fp to, but not in-
with Nae=8,9, .. .,21 andT=200 mK. The dashed line is gas- cluding, 0.1700 atom/Atotal coverage. Since the first-layer
liquid coexistence line. The solid line indicates a coexistence regiogoverage in the experiment is between 0.120 and 0.127 for
terminating in an incommensurate solid phase. these densities, gas-liquid coexistence terminates at second-
layer coverages anywhere from 0.033 to 0.050 atdmHbr
At finite temperatures, the Maxwell construction shouldcomparison, the gas-liquid phase terminates at the second
be applied to the total free energy. Unfortunately, the fredayer coverage 0.0480(6) atont/f our simulation. Super-
energy is not directly accessible from the PIMC simulation.fluidity is first observed in the torsional oscillator measure-
We instead make use of the fact that at very low temperaments at 0.174 atom/A Thus, the superfluid signal, as ob-
tures the free energy and the energy are approximately theerved by this technigue, becomes significant at the coverage
same, and become identical at zero temperature. We can thugere our simulation determines that the second layer is uni-
apply the Maxwell construction to low temperature energyformly covered by the liquid phase.
values to determine an effectively zero-temperature phase The density we determine for uniform liquid coverage can
diagram, provided that the values have converged to theiilso be compared to other simulations. In the two-
zero-temperature limits. To implement this procedure, weadimensional calculations of Whitlocét al, the equilibrium
first calculated energy values for a range of second-layeliquid coverage is 0.04356 atondAat zero temperature.
densities at 200 mK. Selected energy values were recalctFhis result is supported by the low-temperature results of 2D
lated at a higher temperature, typically 400 mK, and werePIMC calculationg® This is slightly below our onset cover-
seen to be within error bars of the 200 mK results. Thisage, perhaps because we allow for particle motion perpen-
indicates that our 200 mK calculations are effectively zerodicular to the substrate. Other calculations for helium films
temperature results. also show a slight increase in the equilibrium density relative
The application of the Maxwell construction to the total to the 2D result. In the Monte Carlo calculation for the first
energy values calculated using th& B box has been shown layer of helium on graphit& the equilibrium density is de-
in our previous publicatioh® Figure §a) summarizes the termined to be 0.0443 atom?AThe effects of wave func-
results. The energy minimum was determined to occur ation spreading will be even greater in the second helium
0.1746 atom/A (30 particles. For comparison, Fig. 9 layer. Wagner and Ceperley’s simulation of helium adsorbed
shows the energy calculations using th& 3 cell. These on solid hydrogeff also demonstrated that the liquid equi-
energy values have been shifted Big.emnin for clarity, librium density increases when motion perpendicular to the
whereey,i,= —32.754-0.020 K. The energy minimum oc- substrate is allowed. They find a liquid coverage of
curs at 0.1778 atomA(12 particles. Note that for both  0.046(1) atom/A, comparable to our result. Thus the cal-
simulation cells the minimum energy per particle occurs atulations of films with perpendicular spreading show a trend
nearly the same coverage value, despite the fact that the ®ward higher liquid densities, with the onset density ap-
x5 cell is 2 2/3 times as large as thex3 cell. In general, proaching the 2D value as the helium-substrate potential be-
we find all the energy values calculated with the two cells tocomes stronger. From a 2D viewpoint, this can be under-
be in agreement. See Fig(8. stood as a reduction of the hardcore repulsion, which allows
The low density region of the second layer is known ex-for closer crowding.
perimentally to have coexistence between a gas phase and aAt the highest second-layer densities, we can identify an-
superfluid liquid phase. In order to determine the gas-liquidbther unstable region in the total energy values of the58
coverage range in our simulation, we take the gas phase t®ll between 0.2032 and 0.2096 atorfy&orresponding to
have zero density at zero temperature and thus zero tot#he CIC mixed phase. As shown previouslythe coexist-
energy. Two-dimensional calculatidfizonfirm that this as- ence line can be drawn between the total energy values at
sumption is correct for low temperatures. A coexistence linghese two densities. The intermediate energy values lie on or
can then be drawn between the beginning of the secondbove this line, so the region has coexisting phases. In par-
layer, 0.1270 atom/A and the density with the minimum ticular, the energy value at 0.2080 atorfias found to lie
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1.0 ‘ . . The temperature dependence of the energy and superfluid
density at a sample liquid density of 0.1778 atofifave
been determined. This coverage corresponds to a second-
4 layer coverage of 0.0508 atonfAValues were calculated
using the 5<3 simulation cell with twelve active particles,
and are illustrated in a previous publicatibtiThe superfluid
R density is relative to the second-layer density. Both the en-
ergy and the superfluid density converge to the ground state
for temperatures below 0.8 K. The slow decay of the super-
_ fluid density at higher temperatures is a typical 2D finite-size
effect?® The superfluid density values have begh fit to
the solution to the Kosterlitz-Thoules¢KT) recursion
relations* From the intersection of the fit and the KT tran-
sition line, we estimate the transition temperature toThe
~0.88 K. For comparison, the 2D PIMC simulatf8rob-
0.0 " S tains T,=0.86+0.02 K at 0.0508 atom/A
4.0 6.0 , 80 10.0 The specific heat of the liquid, commensurate solid, and
z(A) incommensurate solid phases can be found by differencing
the energy per particle with respect to temperature. This was
shown in our previous publicatiori.For the liquid phase, a
broad, low peak with a maximum value at 1.18 K was found.
This is comparable to the experimental heat capacity results,

completely above the coexistence line, providing an unamWhich have a peak at 1 K. For the commensurate solid phase,

biguous signal for coexistence. The range we find is in goo&l specific heat peak at at.)OUt 1.5 Kwas fognq. This 'S com-
agreement with the coexistence region 0.2030 (Jarable to the heat capacity measurenteattsimilar density

0.2080 atom/A that can be determined from the heat capac-values’ which also have a peak at 1.5 K. This close agree-

ity peaks® This phase coexistence is not a product of finite-MeNt Provides some additional evidence that ifiec |7 C
size effects. The beginning of a similar region may be ideniPhase occurs in the experiment. Finally, for the IC solid, a
tified between the densities 0.2032 and 0.2117 atémwh Peak at 0.7 K.was obtained, somewhat lower than the peak in
the 5x 3 simulation cell, Fig. 9. Phase coexistence in factin€ heat capacity measurements at the same density, which
becomes clearer in the>85 cell because we are able to OCCUrs at1 K.
examine more density values in the unstable region.
The presence of the C phase at 0.1996 atdrméfuires IV. SUMMARY
an LC coexistence region between it and the liquid. The
region can also be identified in thex& cell. The end points A number of recent experiments indicate that the second
of the LC phase are 0.1905 and 0.1969 atofn/fhe inter-  layer of helium on graphite has an interesting phase diagram.
mediate energy values lie on the coexistence line within erroff orsional oscillator measurements detect superfluidity over a
bars. The LC range is in reasonable agreement with the cdarrow density range in this lay&t Neutron scattering®
existence range 0.1871 to 0.1970 atofmtfetermined from detects an incommensurate solid phase at high densities.
heat capacity —measuremefits. Torsional oscillator Heat capacity measuremehtshave found evidence for
measurement8 also indicate that the coexistence region be-liquid-gas coexistence and the incommensurate solid phase.
gins at about 0.187 atom#A The LC phase cannot be de- The heat capacity data also show the existence of an inter-
termined in the 5 3 cell due to the coarseness of the cov-mediate phase between the liquid and incommensurate solid,
erage grid. which is possibly a commensurate solid. The existence of
this commensurate solid phase would explain the disappear-
ance of superfluidity at higher second layer coverages. Mo-
tivated by these experiments, we have undertaken a simula-
Figure 10 depicts the density profiles for selected layetion of this layer.
densities. These plots are normalized such that integrating In order to study the second layer with a Monte Carlo
p(z) gives the number of particles. Promotion to the thirdsimulation for a range of temperatures, it is necessary to
layer can be clearly observed at the highest density showrlevelop a method that incorporates both particle permuta-
0.2159 atom/A, so we conclude that layer promotion oc- tions and the effects of the substrate and the solid first layer
curs between 0.2117 and 0.2159 atof/Ahis is in excel-  on the second. Permutations are necessary to obtain the su-
lent agreement with the completion density of 0.212perfluid phase. The effects on the solid first layer must be
atom/& determined from the heat capacity measurem&nts. included since the commensurate second layer solid is par-
A somewhat lower value of 0.204 atonf/Aor third layer tially registered with respect to the first layer. First-layer and
promotion is obtained from the isothermal compressibilitysubstrate effects also play a role in the formation of the in-
minimal*! Also of note, Whitlocket al?? estimate that pro- commensurate solid phase, which replaces the commensurate
motion to the third layer begins at the second-layer coveragphase before layer promotion begins.
of 0.08 atom/&, quite close to but somewhat lower than ~ We have developed a path-integral Monte Carlo method
our value of 0.085 atom/A that includes the above features. Particle permutations were

0.8

0.6

p(2)

FIG. 10. Density profiles for the second layer found using the
5% 3 cell, with densities 0.1694, 0.1778, 0.1863, 0.1948, 0.2032
0.2117, and 0.2159 atom?A

C. Other properties
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included in the simulation using a method developed for bulkp. 1750 atom/A, which is the density with the minimum
helium? We have shown that the helium-helium and energy per particle. This density was found to be insensitive
helium-graphite interactions can be incorporated into theo finite-size effects, and is in excellent agreement with the
simulation by using effective interactions found from the ex-onset of superfluidity determined by torsional oscillator mea-
act solutions for the interacting part of the appropriate densurements. It is also consistent with heat capacity measure-
sity matrices. Realistic helium-helium and helium-graphitements. We demonstrated that the liquid phase in our simula-
potentials are used to find these effective interactions. Fdion is superfluid, and we determined that the transition
the helium-graphite effective interactions, we have showrfemperature was close to the value determined for a purely
how this solution may be approximated so that off-diagonalD_superfluid at the same density. . . .
matrix elements may be efficiently and accurately included The helium layer is uniformly covered in our simulation
in Monte Carlo sampling. The interaction of the second layePY the liquid phase from 0.1750 to 0.1905 atorfy//at

of helium atoms with the solid first layer was approximated*/hich poihnt quuid—c?ﬂmensurate solid phase coexistipcg
by placing first layer atoms at triangular lattice sites with aP€9ins. The onset of this coexistence terminates superfluid-
ity, since the growth of the solid phase disrupts the connec-

lattice spacing that gives the completed first layer density,.”: . . :
These atoms were located at a fixed height above the sulpy'ty required to detegt the superﬂ_wd. Experimentally,
strate, given by the minimum of the effective helium- Iquid-commensurate solid phase coexistence has been deter-
graphite interaction. Configurations of these atoms were ndinmed to begin at O.'1870 atonilAby both tor5|onal_ oscilla-

Jor and heat capacity measurements. We determined that the

sampled, which allowed us to scan second layer densiti X )
with a finer grid. Therefore, we study the second layer atom&auid phase is completely replaced by théx |7 commen-
te solid for densities above 0.1970 atofy/f good

under the influence of their mutual interactions and a stati¢ur@ _ _ ,
potential produced by the frozen graphite substrate and thddreement with heat capacity measurements. Phase coexist-

frozen first layer helium atoms. This approach ignores effect§"ce between the commensur??t]eAind incommensurate solid
on the second layer from the zero point motion of the first?hases begins at 0.2032 atorfVAFor coverages above

layer solid and first layer compression effects. We feel this i€-2080 atom{,&, the incommensurate solid is the only phase
a reasonable approximation because the relatively high Dé&ccurring until layer promotion. These ranges for the solid
bye temperature of the completed first laifeneans that it CO€xistence and the incommensurate solid are in agreement
will be relatively stiff for the temperatures of our simulation. With the heat capacity measurements. The density ranges for
Compression effects on the first layer by the second are mo&! the second layer phases described above are summarized
important for low second layer densitiEspelow the range N Fig. 8@). Finally, we observed layer promotion for cover-
of our simulation. ages above 0.2117 atonf/Ain excellent agreement with ex-
Using the above simulation method, we were able to idenPeriment.
tify, in order of increasing density, superfluid quuidﬁ
X /7 commensurate triangular solid, and incommensurate
triangular solid phases from particle configurations and static This work was supported in part by the National Aeronau-
structure factor calculations. We also calculated the specifitics and Space Administration under Grant No. NAG3-1841.
heat for each of these phases and observed peaks in gene®ame of the calculations for this work were performed using
agreement with experiment. the computational facilities of the Supercomputer Computa-
The density ranges at effectively zero temperature of eactions Research Institute and the National High Magnetic
of the second layer phases and their coexistence regions wegeld Laboratory at the Florida State University. We wish to
determined using the Maxwell construction. We found that athank W. Magro and M. Boninsegni for allowing us to com-
low densities, the layer is phase separated into a liquid drogeare outputs of our program to theirs for the helium-helium
let and a zero density gas. The range of this phase is 0.12High-temperature density matrix so that we could verify our
to 0.1750 atom/A Gas-liquid coexistence ends at the equi-solution. M. P. wishes to thank M. C. Gordillo for discus-
librium density for the liquid phase. This occurs at sions on the superfluid transition temperature.

ACKNOWLEDGMENTS

1G. Zimmerli, G. Mistura, and M. H. W. Chan, Phys. Rev. Lett. 7K. Carneiro, L. Passell, W. Thomlinson, and H. Taub, Phys. Rev.

68, 60 (1992. B 24, 1170(1981.

23. G. Dash and M. Schick, ifihe Physics of Liquid and Solid 8H. J. Lauter, H. Godfrin, V. L. P. Frank, and P. LeidererPinase
Helium, edited by K. H. Bennemann and J. B. Ketterg@riley, Transitions in Surface Films,2dited by H. Taub, G. Torzo, H.
New York, 1978, pt. Il. J. Lauter, and S. C. FaifPlenum, New York, 1991

3M. Schick, inPhase Transitions in Surface Filmsdited by J. G. 9H. J. Lauter, H. Godfrin, and P. Leiderer, J. Low Temp. PIdys.
Dash and J. Ruvald$lenum, New York, 1980 205(1992.

“D. S. Greywall and P. A. Busch, Phys. Rev. LeffZ, 3535 °P. A. Crowell and J. D. Reppy, Phys. Rev. L&, 3291(1993.
(1991). 11p A, Crowell and J. D. Reppy, Phys. Rev.5B, 2701(1996.
5D. S. Greywall, Phys. Rev. B7, 309(1993. 12| w. Bruch, M. W. Cole, and E. ZarembRhysical Adsorption:

5M. Nielsen, J. P. McTague, and L. PassellFhase Transitions Forces and Phenomen®xford, New York, 1997.

in Surface Filmsedited by J. G. Dash and J. Ruval@®enum, M. Pierce and E. Manousakis, Phys. Rev. L8tt, 156 (1998.
New York, 1980. 14M. Bretz, Phys. Rev. Leti31, 1447(1973.



3814 MARLON PIERCE AND EFSTRATIOS MANOUSAKIS PRB 59

155, E. Polanco and M. Bretz, Phys. Revl® 151 (1978. 2’M. Wagner and D. M. Ceperley, J. Low Temp. Phg62, 275
163, G. Dash,Films on Solid SurfacegAcademic, New York, (1996.
1975. 28R. P. Feynman, Phys. Re91, 1291 (1953.
''V. Elser, Phys. Rev. Let62, 2405(1989. 29D. M. Ceperley, Rev. Mod. Phy§7, 279 (1995.
BE. F. Abraham, J. Q. Broughton, P. W. Leung, and V. Elser,30a D, Novaco, Phys. Rev. B3, 3194(1976.
Europhys. Lett12, 107 (1990. 31R. E. Ecke and J. G. Dash, Phys. Rev2®& 3738(1983.
'9P. A. Whitlock, G. V. Chester, and M. H. Kalos, Phys. Re8® 325 A Aziz et al, Mol. Phys.77, 321 (1992.
2418(1988_. 33D. M. Ceperley and E. L. Pollock, Phys. Rev. Lef§, 351
2OM. C. Gordillo and D. M. Ceperley, Phys. Rev. B3, 6447 (1986.
;1998 34E. L. Pollock and D. M. Ceperley, Phys. Rev.38, 8343(1987).
F. F. Abraham and J. Q. Broughton, Phys. Rev. LB8. 64 35t | pjiock and K. J. Runge, Phys. Rev.4B, 3535(1992.
(1987. 36W. E. Carlos and M. W. Cole, Surf. S@1, 339(1980.

22p. A. Whitlock, G. V. Chester, and B. Krishnamachari, Phys.
Rev. B58, 8704(1998.

3B. E. Clements, E. Krotscheck, and H. J. Lauter, Phys. Rev. Lett,
70, 1287(1993.

STW. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipe¢Cambridge, New York, 1992

E. L. Pollock and D. M. Ceperley, Phys. Rev.3B, 2555(1984).

39 . . . .
24, E. Clements, J. L. Epstein, E. Krotscheck, and M. Saarela, M. P. Allen and D. J. TildesleyComputer Simulation of Liquids

Phys. Rev. B48, 7450(1993. 1o Oxford, New York, 1987.
25\, M. Saslowet al, Phys. Rev. B54, 6532 (1996. N. Schultka and E. Manousakis, Phys. Revd® 12 071(1994.

26\, Wagner and D. M. Ceperley, J. Low Temp. Phgd, 185 'D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Le3®, 1201
(1994. (1979,



