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Path-integral Monte Carlo simulation of the second layer of 4He adsorbed on graphite
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We have developed a path-integral Monte Carlo method for simulating helium films and apply it to the
second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite interactions that are
found from potentials which realistically describe the interatomic interactions. The Monte Carlo sampling is
over both particle positions and permutations of particle labels. From the particle configurations and static
structure factor calculations, we find that this layer possesses, in order of increasing density, a superfluid liquid
phase, aA73A7 commensurate solid phase that is registered with respect to the first layer, and an incom-
mensurate solid phase. By applying the Maxwell construction to the dependence of the low-temperature total
energy on the coverage, we are able to identify coexistence regions between the phases. From these, we deduce
an effectively zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and
torsional oscillator measurements, and demonstrate that the experimentally observed disruption of the super-
fluid phase is caused by the growth of the commensurate phase. We further observe that the superfluid phase
has a transition temperature consistent with the two-dimensional value. Promotion to the third layer occurs for
densities above 0.212 atom/Å2, in good agreement with experiment. Finally, we calculate the specific heat for
each phase and obtain peaks at temperatures in general agreement with experiment.@S0163-1829~99!00705-5#
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I. INTRODUCTION

Helium adsorbed on graphite provides an excellent re
ization of a number of nearly two-dimensional~2D! phenom-
ena. The helium film grows in a succession of distin
atomically thin layers as the density of the adsorbate
creases, and as many as seven such layers may be obs
on a well-prepared substrate.1 Consequently, it is possible t
investigate the evolution of each layer’s phase diagram
number of experimental methods have been used for
purpose, including specific heat measurements,2–5,1 neutron
scattering,6–9 torsional oscillator measurements,10,11 and
third sound.1 The phase diagrams of the layers nearest
substrate are rich. Evidence has been found for self-bo
fluid phases that are superfluid at low temperatures, a va
of registered solid structures, and incommensurate s
phases. These phases and the coexistence regions that
rate them are governed by a delicate balance of quan
effects, such as large zero-point motion and particle per
tations, with adatom and substrate interactions.

Much of the early experimental work on the helium
graphite system concentrated on the first adsorbed la
Several reviews of this work are available.2,3,12 On the other
hand, until recently, relatively little information was ava
able on the phases of the second and higher layers.
situation has changed dramatically over the last sev
years. Extensive heat capacity measurements4,5 of the first
six layers have been performed, and superfluidity in
higher layers has been detected by both torsio
oscillator10,11 and third sound measurements.1 Taken to-
gether, these experiments indicate that the second layer h
unique phase diagram, with superfluid, commensurate s
and incommensurate solid phases. No other layer exhibit
three phases.

Motivated by these experiments, we have undertake
path-integral Monte Carlo~PIMC! simulation of the second
adsorbed layer. We identify a liquid~L! phase with an equi-
PRB 590163-1829/99/59~5!/3802~13!/$15.00
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librium density of 0.1750 atom/Å2, a A73A7 commensu-
rate triangular solid~C! at 0.1996 atom/Å2, and an incom-
mensurate triangular solid~IC! phase for densities abov
0.2083 atom/Å2. All coverage values are for the total ad
sorbed film. Using the Maxwell construction, we determi
coexistence regions between these phases, namely, the
liquid ~GL!, liquid-commensurate solid ~LC!, and
commensurate-incommensurate solid~CIC! phases, at effec-
tively zero temperature. Our calculated phase diagram c
firms the idea that the superfluid phase is interrupted by
formation of the commensurate solid.10,11,5We further show
that the liquid phase behaves similar to a typical tw
dimensional superfluid. We also calculate the specific h
for each phase and find peaks in general agreement with
experimental values. Finally, we observe promotion to
third layer at a coverage in good agreement with experim
A preliminary report of some of our findings has been pu
lished elsewhere.13 The present paper expands and exten
this work.

This paper is arranged in the following manner. Sect
I A provides an overview of what is known about the seco
layer from experiments. In Sec. I B, we review previo
simulations of helium films and the related simulation
two-dimensional helium. We point out that none of the
simulations, while interesting in their own right, exhibit a
the phenomena observed in the second-layer phase diag
Section II presents the details of our simulation meth
which includes particle permutations and realistic partic
particle and particle-substrate interactions. The results of
calculations are presented in Sec. III. We demonstrate
existence of each phase, explain the construction of
second-layer phase diagram, and present calculation
properties for each phase.

A. Experimental overview

Specific heat measurements have formed the basis
constructing the first helium layer’s phase diagram, but u
3802 ©1999 The American Physical Society
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recently, relatively little work was done on the second lay
with a couple of exceptions. Bretz14 examined this layer un
der compression of the third and obtained evidence for
melting of the incommensurate second layer solid. The
density range of this layer was explored by Polanco a
Bretz.15 They determined that the compression of the fi
layer by the growth of the second must be taken into acco
in order to determine the phases at low second-layer de
ties. They interpreted their results to indicate that the sec
layer has gas-liquid coexistence at low coverages.

The heat capacity measurements of Greywall and Bu
provide the most extensive investigation of the second-la
phase diagram. They find evidence for four phases: gas,
uid, commensurate solid, and incommensurate solid. Th
phases are identified in the following manner. At low den
ties, a low, rounded peak occurs in the heat capacity. T
has previously been associated with the liquid phase.15 At
low temperatures, the heat capacity depends linearly on
sity roughly between 0.13 and 0.16 atom/Å2, which is a
requirement for coexisting phases,16 Thus this region can be
identified as a gas-liquid coexistence region, with the
phase having negligible density at the lowest temperatu
Evidence for liquid-commensurate solid coexistence can
found between 0.187 and 0.197 atom/Å2. In this region, in
addition to the low peak associated with the liquid pha
another, larger peak at a higher temperature can be obse
The location of the larger peak is independent of covera
suggesting that it may be associated with the melting o
commensurate solid phase. Greywall suggested5 that this
phase corresponds to theA73A7 commensurate structur
proposed earlier for3He on graphite.17,18A third coexistence
region occurs between 0.2030 and 0.2080 atom/Å2, where
the commensurate melting peak is accompanied by ano
lower temperature peak. This second peak is associated
the melting of an incommensurate solid phase. For covera
from 0.2080 to the beginning of third layer promotion
0.212 atom/Å2, the incommensurate melting peak is the s
feature in the specific heat measurements. Unlike the p
associated with the commensurate phase, the incomme
rate melting peak is temperature dependent, occurring
about 1 K at the lowest incommensurate densities, but i
creasing to about 1.5 K at the density where third layer p
motion begins.

The principal limitation on using the heat capacity me
surements to determine the phase diagram is that they
only identify phases indirectly, so additional confirmation
desirable. Direct evidence for the incommensurate s
phase comes from neutron scattering,7–9 but no similar evi-
dence exists for the commensurate phase. Apparently,
incommensurate phase can be resolved in these experim
only after some additional compression by the third lay
Consequently, there is no scattering evidence for the c
mensurate solid, which is replaced by the incommensu
solid before promotion to the third layer begins.

Further insight into the second-layer phase diagr
comes from the torsional oscillator measurements of Crow
and Reppy.10,11 They detected superfluidity at intermedia
densities, which incidentally provided direct evidence th
the second layer has a liquid phase. Questions remain a
the liquid phase, however, since the apparent onset dens
somewhat higher than would be expected from either
,
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heat capacity measurements or the liquid equilibrium den
of purely two-dimensional helium.19 The range of superfluid
coverage also provides additional, although indirect, e
dence that a solid phase begins to form abo
0.187 atom/Å2. Above this density, the superfluid sign
vanishes and does not reappear until the third layer. T
disappearance coincides almost exactly with the growth
the supposed commensurate solid phase. Apparently,
growing solid phase disrupts the connectivity required to
tect superfluidity.

B. Previous simulations

The results of Monte Carlo calculations are often used
help interpret the experimental results discussed above.
simplest way to treat a helium layer is as a purely tw
dimensional system, for which there are both zero tempe
ture and finite temperature calculations. Whitlocket al.19

used Green’s function Monte Carlo to calculate the equi
rium liquid coverage at zero temperature, obtaini
0.04356 atom/Å2. They also determined that 2D helium
would solidify, and that the liquid and solid phases coexis
between 0.0678 and 0.0721 atom/Å2. More recently, Gor-
dillo and Ceperley20 have investigated the 2D phase diagra
at finite temperatures with path integral Monte Carlo. Th
low-temperature results are consistent with the ze
temperature calculations. They also determined spino
lines and found a finite density gas phase at temperat
above 0.75 K. The direct comparison of these results w
the second helium layer is limited, since the 2D calculatio
do not include any substrate features and do not allow
film to spread perpendicularly. As a result, no commensu
solid phase or layer promotion can occur.

Simulations of helium films using realistic models for th
graphite substrate have also been performed. Abraham
Broughton21 used a path-integral Monte Carlo simulation
investigate the first layer of3He on graphite. They were abl
to identify fluid, commensurate solid, domain wall liquid an
solid, and incommensurate solid phases. Notably, they de
mined that particle permutations were unimportant for
first layer for the coverages they investigated, so there
no possibility for superfluidity in the simulation. Experimen
tally, the phase diagrams for3He and 4He at the densities
they simulated are nearly identical, so it reasonable to c
clude that their simulation results also apply to4He. This
work was extended18 to a simulation of the second adsorbe
layer of 3He at theA73A7 commensurate density. Partic
permutations were again neglected. It was established
the second-layer commensurate phase was stable for
peratures below 1 K. Very recently, Whitlocket al.22 inves-
tigated the ground state properties of the first helium la
using a laterally averaged potential for the helium-graph
interaction. They determined the equilibrium liquid covera
and the onset coverage for solidification in the first layer, a
determined the coexistence region between these two ph
They also estimated completion densities for the first a
second layers, obtaining agreement with the experimenta
sults. They did not take the corrugations of the graphite s
strate into account and so did not observe theA33A3 com-
mensurate solid phase that occurs in the first layer.
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Complementary to the calculations discussed above is
work by Clementset al.23–25 using the hypernetted-chai
Euler-Lagrange theory. For 2D helium, this method rep
duces the Monte Carlo results19 for the liquid phase and pro
vides a direct calculation of the chemical potential, th
sound, and spinodal points. When applied to layered s
tems, the theory gives liquid coverage ranges and laye
transitions but is not capable of investigating solid phas
For this reason, these calculations are restricted to the t
and higher helium layers, and assume that the first two la
form an inert, featureless solid. Also complementary are
path-integral Monte Carlo calculations of Wagner a
Ceperley26,27 for 4He and hydrogen films on crystalline hy
drogen. In their helium film simulation, superfluidity an
layer-by-layer growth occurred, but the film did not solidif

As we discussed in Sec. I A, the second layer of4He on
graphite is unusual in that it is known experimentally to ha
both a superfluid liquid and two solid phases, one comm
surate and the other incommensurate with the first layer.
simulations discussed above are interesting in their o
right, but none have exhibited the three phases seen in
second layer. In order for a simulation to produce the
phases, it must possess three features. First, the presen
superfluidity means that particle permutations must be
cluded in the simulation. This is because superfluidity res
from permutation cycles of infinite length.28 It is also ex-
pected that the boundaries of the phases will be effected
permutations. Second, the commensurate second-layer
is found to be registered with respect to the first layer, so
effect of first-layer atoms must be taken into account. Th
the attraction of the substrate and first layer on the sec
must be implemented correctly so that the commensu
phase is replaced by the incommensurate phase before
motion to the third layer begins. In the following section w
outline our simulation method, which contains the necess
features to exhibit these three phases.

II. SIMULATION METHODS AND DETAILS

The path-integral Monte Carlo simulation is a power
tool for studying quantum systems at finite temperatures.
incorporating sampling of particle configurations and parti
permutations, both normal and superfluid helium can
simulated.29 If a substrate is added to the simulation, a qua
tum film will result. The purpose of this section is to descri
the modifications that are necessary to add the effects o
substrate into the simulation. The result will be a simulat
method that is capable of exhibiting superfluid, commen
rate solid, and incommensurate solid phases, as well as
promotion.

Central to our PIMC method is the approximation us
for the high temperature density matrix. It is essential t
the starting temperature be made as low as possible so
permutations will be accepted. As we will discuss in th
section, the graphite substrate complicates a straight-forw
extension of the starting approximation used in bulk simu
tions. For this reason we will not include sampling of t
first-layer atom configurations in the calculation and w
concentrate instead on the second layer.

It is essential to include the effect of the first layer on t
second, however. We approximate this effect by plac
he
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first-layer atoms on the sites of a triangular lattice at a fix
height above the substrate. This allows us to treat the heli
graphite correlations in a much simpler manner, since
atoms on the second layer are not effected by the corru
tions of the graphite substrate. By not sampling first-lay
configurations, we are also able to increase the numbe
second-layer atoms in the simulation. In turn, this allows
to scan second-layer coverages in a sufficiently fine grid
observe coexistence regions. Having a fine grid is parti
larly important for high second-layer densities, sin
the liquid-commensurate solid and commensura
incommensurate solid coexistence regions exist over r
tively narrow ranges.

The trade off for using this approach is that we igno
zero-point motion in the first layer. This will cause the se
ond layer to form closer to the first layer and have a narrow
density profile.30 Ignoring the response of the first layer
the second is also known to lead to a lowering of the ene
of a layer of helium adsorbed onto solid hydrogen.26 How-
ever, experimental results indicate that neglecting zero-p
motion in the first layer of helium on graphite atoms is
reasonable approximation. First, the Debye temperature
the solid first layer is greater than 50 K, and it may be trea
as a 2D Debye solid up to 3 K.31 In our simulation, the
temperature is as low as 200 mK, and never exceeds 2.
so the first layer is relatively stiff. Second, although the fi
layer is known to be compressed by the growing seco
layer, this is most important at low second-layer densiti
just after second-layer promotion begins.15 The coverages
studied by Polanco and Bretz15 are below the range of ou
simulation. As we shall see, our approach is sufficient
reproduce many of the observed features of the second la

A. Path-integral representation of the partition function

We wish to study the problem of a quantumN-particle
system in the presence of a substrate. The Hamiltonian
this system may be written as

H52\2/2m(
i 51

N

“ i
21(

i , j

N

v2B~ ur i2r j u!1(
i 51

N

vsub~r i !,

~1!

wherev2B is the spherically symmetric two-body potenti
between particles, andvsub is the external field produced b
the substrate. The two-body potential for helium is acc
rately represented by the Aziz potential.32 Previous path-
integral simulations using this potential have proven qu
capable of reproducing numerous properties of liqu
helium.29,33–35 The potential between helium and graph
has been investigated by Carlos and Cole.36 Using helium-
scattering data, they evaluated several forms for the heli
graphite potential. In order to write this potential in a pa
form, anisotropic terms that effectively enhance corrugat
must be included. Of the potentials examined, an anisotro
6-12 Lennard-Jones potential was found to be prefera
although the form was not uniquely determined. For heliu
atoms more than 4 Å above the substrate, corrugations
negligible, and the anisotropic potential can be replaced b
laterally averaged potential that depends only on the he
of the atom above the substrate.
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The statistical mechanics of quantum systems is gover
by the density matrix and the partition function. For a syst
of N bosons at an inverse temperatureb, the density matrix
is given by

r~R,R8;b!5
1

N!(P
^Rue2bHuPR8&, ~2!

where R and R8 are two configurations ofN bosons. The
sum overP is over all permutations of particle labels, an
PR8 is one such permutation. Permutations lead directly
the off-diagonal long-range order that produces superfluid
The partition functionZ is found by integrating the diagona
elements of the density matrix

Z5
1

N!(P
E r~R,PR,b!d3R. ~3!

Evaluating the partition function for interacting systems
very low temperatures is complicated by the fact that
kinetic and potential terms in the exponent of the dens
matrix cannot be separated, so the form of the density ma
is not known in, for instance, the configuration space rep
sentation. We can avoid this problem by insertingM21 in-
termediate configurations into Eq.~3! to obtain the path-
integral formulation of the partition function

Z5
1

N!(P
E •••E d3R1•••d3RM21d3R

3r~R,R1 ;t!r~R1 ,R2 ;t!•••r~RM21 ,PR;t!, ~4!

where t5b/M . The problem of evaluating the partitio
function at a low temperatureb21 has been replaced by th
problem of multiple integrations of density matrices at
higher temperaturet21. The advantage of this is that th
high-temperature density matrices may be approximated
practice, the integrals appearing in Eq.~4! cannot be directly
evaluated for systems of strongly interacting particles. Mo
Carlo sampling may be used instead to generate config
tions and calculate observables.

Equation ~4! lends itself to an interesting visualization
The N quantum particles can be thought of asN interacting
classical ring polymers, each withM beads. Sampling the
partition function then corresponds to sampling the poss
configurations of these polymers. Furthermore, particle p
mutations may be introduced into the Monte Carlo meth
by splicing together two or more polymer chains. This
known as the polymer isomorphism.

B. Approximating the density matrix

In order to use Monte Carlo sampling on the partiti
function, we must first provide a starting approximation f
the high-temperature density matrices that appear in the
tegrand of Eq.~4!. The simplest starting approximation is
use a very largeM, which allows us to separate the dens
matrix into kinetic and potential energy terms. This is t
semiclassical approximation and is exact in the limitM
→`, according to the Trotter theorem. For superfluid heliu
systems it is necessary to go beyond the semiclassica
proximation so that the starting temperature may be mad
ed
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low as possible. This makes sampling the permutations
sible and speeds the equilibration of the ring polymers
avoiding excessively long chains. The high-temperature d
sity matrix we introduce below can be used with starti
temperatures as low as 40 K. We thus only have to use,
instance,M540 to simulate a system at 1 K.

We approximate the high temperature density matrix a
product of the exact free particle solution, an effective tw
body interaction found from the exact solution for two inte
acting helium atoms, and an effective external interact
found from the exact solution for a single atom in a graph
potential:

r~R,R8;t!')
i 51

N

r1
free~r i ,r 8i ;t!

3)
i 51

N

r̃1
Gr~r i ,r 8i ;t!

3)
i , j

N

r̃2
He~r i j ,r 8i j ;t!, ~5!

wherer i j 5r i2r j . The termsr1
free, r̃2

He, andr̃1
Gr will be dis-

cussed below. This approximation assumes that three-b
contributions are negligible and that the helium-helium a
helium-graphite interactions can be decoupled. The form
has been shown to be valid for bulk helium systems w
starting temperatures as low as 40 K.

The termr1
free is the density matrix for a free particle o

massm, given by

r1
free~r ,r 8;t!5l t

23exp@2p~r2r 8!2/l t
2#, ~6!

wherel t5A2pt\2/m is the mean thermal wavelength fo
the temperature 1/t. The helium-helium termr̃2

He is the in-
teracting part of the solution to the density matrix for tw
helium atoms. This can be found by separating the den
matrix into center-of-mass and relative components. T
density matrix for the relative coordinates is a solution to

]rHe

]t
~r i j ,r 8i j ;t!5@~\2/m!¹22VHe~r i j !#r

He~r i j ,r 8i j ;t!.

~7!

This equation is equivalent to that satisfied by the time e
lution propagator in imaginary time. We solve this equati
using the methods discussed by Ceperley.29 Briefly, the den-
sity matrix can be expanded in a series of partial waves
the expansion coefficients are found by using the mat
squaring method. The resulting solution is used to define
effective helium-helium interaction UHe(r i j ,r 8i j ;t)[
2 ln(r̃2

He) where r̃2
He5rHe/r free. This is a six-dimensiona

function, but the spherical symmetry of the density mat
allows us to approximate it as a series of one-dimensio
functions. This greatly reduces the memory requirements
increases the speed at which the density matrix can be ev
ated for a particular configuration.

The density matrix for a single helium atom above
graphite substrate is a solution to
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]r1
Gr

]t
~r ,r 8;t!5@~\2/2m!¹22VGr~r !#r1

Gr~r ,r 8;t!, ~8!

where VGr(r ) is the full graphite potential. The helium
graphite termr̃1

Gr is the interacting part of the solution to th
equation. Near the substrate, the potentialVGr is anisotropic.
A straight forward solution to Eq.~8! is to solve it at grid
points within a graphite unit cell using, for instance, a thre
dimensional implicit method with periodic boundary cond
tions at the edges of the cell. The resulting six-dimensio
function can be approximated as a series, expanding aro
the diagonal elements, but this still gives a series of thr
dimensional functions. This greatly complicates Monte Ca
simulations of the first-layer atoms using Eq.~5!, since stor-
age requirements become large and evaluating the de
matrix by interpolating from three-dimensional tables b
comes excessively burdensome. Thus, simulating the firs
sorbed layer using a high-temperature density matrix i
much more complicated problem than simulating bulk h
lium. One could always avoid these problems by sim
starting at a high enough temperature so that the semicl
cal approximation21 can be used for atoms near the substra
but then getting permutations accepted becomes exceed
unlikely.

The problem becomes much simpler further above
substrate, where corrugations may be ignored. The heli
graphite potential can be found by laterally averaging o
the surface, eliminating thex-y plane periodicity that com-
plicates the solution near the substrate. The helium atom
periences only az-dependent potential, so Eq.~8! can be
solved by separatingr1

Gr(r ,r 8,t) into x, y andz components.
The x and y components are one-dimensional, free-parti
density matrices. The solution forr(x,x8;t), for instance, is

r free~x,x8;t!5l t
21exp@2p~x2x8!2/l t

2#. ~9!

A similar solution exists forr(y,y8;t). Thez dependence is
found by solving the parabolic partial differential equation

]r

]t
~z,z8;t!5@~\2/2m!]2/]z22VGr~z!#r~z,z8;t!,

~10!

whereVGr(z) is the laterally averaged potential.36 This can
be solved by matrix squaring, or by an implicit method37

The initial condition is that the density matrix is a del
function att50. We define the effective interaction for th
helium-graphite density matrix,UGr(z,z8;t)[2 ln@r(z,z8;t)/
rfree(z,z8;t)#. This is still a function of two variables. In
order to make evaluating the density matrix efficient dur
the Monte Carlo runs, we expandUGr as a series of one
dimensional functions. We rewriteUGr(z,z8)5U( z̄,Dz),
where z̄5(z1z8)/2 andDz5uz2z8u. The matrix is domi-
nated by the diagonal elements, so we expand it as a s
about (Dz)2:

UGr~z,z8;t!5
UGr~z,z;t!1UGr~z8,z8;t!

2

1(
m

Um~ z̄!~Dz!2m. ~11!
-
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The average over the two diagonal parts of the solution
the first term is called the end-point approximation. T
functionsUm( z̄) are found byx2 fitting Eq. ~11! to the exact
solution. One simply terminates the series when the appr
mation is sufficiently close to the exact solution. Results
the diagonal solution and the first two expansion terms
shown in Fig. 1. The off-diagonal terms become negligib
for z.4 Å. The diagonal solution can be compared with t
semiclassical approximation. Figure 2 compares the ex
solution for off-diagonal elements to the expansion, Eq.~11!,
and the end-point approximation, 1/2@tV(z)1tV(z8)#.

C. Sampling the density matrix

With the first layer frozen, the density matrix, Eq.~5!, for
the active second layer atoms can be written in the formr
5exp(2S), where

FIG. 1. The diagonal and lowest-order off-diagonal terms of
expansion ofUGr, Eq.~11!. The semiclassical approximation is als
shown. The laterally averaged potential was used andt
50.025 K21.

FIG. 2. The exact solutionUGr(z,z8;t) for z852.82 Å com-
pared with the expansion Eq.~11! and the end-point approximatio
usingtV.
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S~R,R8;t!5~3Nact/2!ln~l t
2!1

p~R2R8!2

l t
2

1
1

2(i 51

Nact

(
j 51

Nact

UHe~r i j ,r 8i j ;t!

1(
i 51

Nact

(
j 51

Nfr

UHe~r i j ,r i j8 ;t!1(
i 51

Nact

UGr~zi ,zj8 ;t!,

~12!

wherer i j 5ur i2r j u. The number of active and frozen heliu
atoms is given byNact andNfr , respectively. In the polyme
isomorphism,S is the action for a system of interacting pol
mers. In sampling the paths, we are effectively choosing
tween two different polymer configurations. The one w
the lower action is the more favorable configuration, and
more likely to be chosen in a Metropolis-style acceptan
test.

As in standard Monte Carlo simulations, the interacti
UHe is cut off at some maximum distancer c<min(Lx ,Ly),
whereLx and Ly are the dimensions of the simulation ce
The long-range correction to the interaction felt by each p
ticle is, in cylindrical coordinates (r, z!,

ULR
He52pE

0

`

n~z8!dz8E
rc

`

rdrUHe~r ,r ;t!, ~13!

wherer 5Ar21(z2z8)2,rc
25r c

22(z2z8)2, and only diago-
nal elements need to be considered. The integral ofn(z8)
gives the density of the system. We make the approxima
that the layer thicknesses can be treated as delta funct
This is exact for the frozen first layer. Thenn(z8)5nfrd(z8
2zfr)1nactd(z82zact) and

ULR
He52pE

rc

`

rdr@nfrU
He~r ,r ;t!11/2nactU

He~r ,r ;t!#,

~14!

wherenfr and nact are the densities of the first~frozen! and
second~active! layers. The factor of one-half before the co
tribution from the active layer is needed to avoid doub
counting. A similar long-range correction is added
]UHe/]t in the energy calculation.

As we have emphasized, particle permutations must
included in simulations of superfluid helium. These perm
tations correspond to splicing together two or more of
polymer rings. This splicing can be accomplished by prop
ing cyclic permutations involving one to four particle labe
on inverse-temperature slicei 1n relative to slicei, where
n52l and l is the overall level of the move. The paths fo
lowed by the permuted particles on the intermediate sli
i 11 to i 1n21 that produce the permutation are then fill
in by successively bisecting the intervali to i 1n. This is
known as multilevel Monte Carlo sampling, an extension
the standard Metropolis method. The interested reader is
ferred to a recent review article on the subject.29

In our Monte Carlo runs for helium films, we takel 53,
since this gives the best balance between accepting s
particle and multiple particle moves. Increasingl increases
the number of permutations that can be accepted but
e-

s
e

r-

n
ns.

e
-
e
-

s

f
e-

le

e-

creases the overall acceptance rate, while decreasingl has the
opposite effect. The overall acceptance rate for the mo
varies between 8% and 15%, depending on the density. T
using l 52 at selected densities showed that thel 53 results
had converged. The acceptance rate of multiparticle per
tations is small, between 0.2 and 0.3 % in the liquid pha
We have found that similar small acceptance rates are s
cient to obtain the superfluid density in bulk simulations.

D. Calculating observables

The expectation value of an observable,A, can be found
from the tracê A&5Z21Tr Ar. We use PIMC to calculate
expectation values for the total energy, the superfluid d
sity, and the static structure factor. Below we give formu
for each of these calculations for a helium film on a su
strate.

The total energy is given by the expectation value

E5
3Nact

2t
1K 2

p~DR!2

l t
2t

1
dUtotal

He

dt
1

dUtotal
Gr

dt L . ~15!

DR is the change in the particle positions between two c
secutive inverse-temperature slices. The termsU total

He and
U total

Gr are shorthand for the sums over the interaction term
Eq. ~12!. Notice that the zero of the total energy occurs
zero second-layer coverage, where there are no active at

The superfluid density can be calculated using the wi
ing numberW for simulations that have periodic bounda
conditions. Nonzero winding numbers occur when particl
through a series of permutations, are permuted with perio
images of themselves. The winding number is directly
lated tors , the superfluid density.29 For a system with peri-
odic boundary conditions in thex-y plane, the superfluid
density is given by

rs

r
5

m^~W•L !2&

2b\2Nact

, ~16!

where the elementsLx and Ly are the dimensions of the
simulation cell.

Finally, structural information can be obtained with th
static structure factor

S~k!5
1

Nact
^r~k!r~2k!&. ~17!

We takeẑ to be perpendicular to the plane of the substra
so k5(kx ,ky). r(k)5( i 51

Nactexp(ik•r i) is the Fourier trans-
form of the density.

E. Testing the method

As can be seen from the previous discussion, simula
helium systems below the superfluid transition is an
tremely complicated task, and it is important to verify a
parts of the method. We have verified our calculations for
solution to Eq.~7! by comparing our results to publishe
results for the Lennard-Jones38 potential and to the Aziz po-
tential. The solution to Eq.~10! for the helium-graphite den
sity matrix was checked by comparing the results obtain
from the matrix squaring and implicit solution methods. W
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3808 PRB 59MARLON PIERCE AND EFSTRATIOS MANOUSAKIS
have verified that the full Monte Carlo method outline
above works for bulk helium systems by reproducing
ported values for the energy, specific heat, and superfl
density.33,35We believe these tests sufficiently prove that o
simulation method works and can be extended to hel
films.

F. Choosing simulation cells

We perform calculations with a variety of simulation ce
that are appropriate for examining different regions of
second-layer phase diagram. The first consideration is
choose a simulation cell that will match the periodicity of t
first-layer triangular solid. This can be done by using a re
angular unit cell with a two-point basis, with unit vecto
a15ax̂ and a25A3aŷ, wherea53.015 Å. Two first-layer
helium atoms are located in each unit cell atb150 andb2
5a1/21a2/2. This gives a coverage of 0.1270 atom/Å2, the
fully compressed first-layer density.5 In examining the sec-
ond layer, our first goal is to scan the layer at intermedi
and higher densities by varying the number of particles
to calculate the total energy at each density. For these ca
lations we use simulation cells with dimensions (5a1 ,3a2)
and (8a1 ,5a2), hereafter referred to as the 533 cell and the
835 cell, respectively. The number of active particles
calculations using the 533 cell ranged from 8 to 21, corre
sponding to densities 0.1605 to 0.2159 atom/Å2. Calcula-
tions with the 835 cell had 24 to 52 active particles, corr
sponding to densities between 0.1651 and 0.2096 atom2.
These two simulation cells are nearly square, which is us
for calculating winding numbers. As will be discussed
Sec. III, the energy calculations for the 533 cell are used to
verify that finite-size effects are not important in the 835
cell. Our conclusions about the coverage ranges of var
phases are drawn from results using the 835 cell.

At high second-layer densities, commensurate and inc
mensurate triangular solid phases occur. In order to fur
investigate these phases, we use simulation cells that
contain an integer number of unit cells of both the first- a
second-layer solids. That is, the simulation cells have
periodicity of both the first- and second-layer solids. It is a
important to note that the solid phases will tend to align w
thex andy axes of the simulation cell. For the incommens
rate solid we use a cell with dimensions (5a1 ,5a2), hereafter
referred to as the 535 cell. This cell can accommodate 3
second layer atoms in an equilateral triangular lattice. A d
gram of a second-layer incommensurate solid in the 535
cell is shown in Fig. 3. The second-layer solid is incomme
surate with respect to the first since no supercell with dim
sions less than the minimum dimension of the simulation b
can be drawn in which both first- and second-layer atoms
periodically repeated.

The simulation of theA73A7 triangular commensurat
solid presents an additional problem since this structur
rotated with respect to the first layer. This triangular so
can be regarded as having a rectangular unit cell with a fo
teen point basis. The unit vectors for this solid ares152a1

1b2 and s2522a11a21b2 . Note that us2u5A3us1u and
usi u5A7uai u,i 51,2. We use simulation cells with dimension
(2s1,2s2) and (3s1 ,2s2) to identify the solid configuration
and calculate the static structure factor. The commensu
-
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density 0.1996 atom/Å2 corresponds to 32 and 48 activ
particles, respectively, for these two cells.

A diagram of the (3s1 ,2s2) simulation cell with the sec-
ond layer atoms inA73A7 registry is shown in Fig. 4. The
large, rotated rectangle gives the bounds of the simula
cell. First layer atom positions outside this rectangle are
riodic images of interior atoms. Note that the location of t
origin is arbitrary. It is not necessary, for instance, to plac
at a high symmetry point of the first-layer lattice, such
over a first-layer atom or at a potential minimum. The ess
tial requirements for the existence of the partially registe
solid are that once the origin is chosen, all of the tw
dimensional space can be divided up into periodically
peated superlattice unit cells~supercells!, and that the rela-
tionships of the first- and second-layer atoms to each o
and to the supercell are the same in every supercell. We h
chosen the origin so that the second-layer atoms can be
to divide up the rectangle into supercells. These~primitive!
supercells are the equilateral parallelograms formed by
heavily shaded lines in the interior of Fig. 4. They can
seen to exactly fill the rectangle. Second layer atoms
located at the four corners, on each of the four sides at
midpoints between the corners, and at the center of e
supercell, so there is a four-point basis of second-layer at

FIG. 3. Diagram of the 535 simulation cell. The shaded circle
denote positions of the first layer atoms. The 32 open circles de
possible positions of atoms in the second-layer incommensurate
angular solid. The arrows indicate the unit vectors for the so
described in the text. The lines emphasize the triangular structu
the solid.
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in each cell. The positions of the first-layer atoms can also
seen to be periodically repeated in every supercell.

III. RESULTS

A. Identification of phases

Experimentally, there is evidence for liquid, commens
rate solid, and incommensurate solid phases in the sec
layer. We now describe the identification of all three pha
in our simulation.

To find the liquid phase, we are guided first by the to
sional oscillator measurements, which detect a liquid ph
between 0.174 and 0.187 atom/Å2. We also find evidence
that densities in this range are liquid in our simulation. F
ure 5 shows a snapshot of a typical liquid density. T
second-layer atoms obviously do not possess spatial or
ing, and the configuration covers the entire surface. M
direct evidence that the system has a liquid phase co
from that static structure factor. Figure 6 shows the resul
a calculation, which is typical of a self-bound liquid, at th
coverage 0.1860 atom/Å2.

Commensurate and incommensurate solid phases ca
identified by a similar procedure. A particularly nice featu
of PIMC is that these solids form on their own, without a
modifications to the high-temperature density matrix, E
~5!. In contrast, previous variational calculations have u
different trial wave functions for the liquid and soli
phases.19 This can be avoided by using a shadow wave fu
tion, but such calculations have not been performed for tw
dimensional helium or helium films.

FIG. 4. Diagram of a simulation cell used for theA73A7 solid.
The dimensions are (3s1,2s2). The shaded circles denote positio
of the first layer triangular solid. The open circles denote poss
positions of the second layer registered solid. The arrows indi
the unit vectors for the solid described in the text. The lines emp
size the triangular structure of the solid. The heavily shaded li
indicate theA73A7 supercells.
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As demonstrated previously,13 we have observed theA7
3A7 commensurate solid phase in our simulation for te
peratures below 1 K. The structure of this phase was de
mined by examining snapshots of the configurations gen
ated by the simulation. Particle paths of the second la
atoms were observed to localize around theA73A7 lattice
sites shown in Fig. 4. We note further that we do not bias
simulation of this solid by beginning the configuration at t
commensurate lattice sites. The existence of the incomm
surate solid, which occurs at a higher density than the co
mensurate phase, has also been demonstrated. A snaps

le
te
a-
s

FIG. 5. Snapshot of a liquid configuration at 0.1778 atom/Å2,
found using the 533 simulation cell with twelve active particle
and T5200 mK. Large circles indicate frozen first-layer ato
sites. The instantaneous configuration of the second-layer atom
indicated by the small circles.

FIG. 6. The static structure function for the liquid phase at
density 0.1860 atom/Å2 andT5500 mK with 26 particles.
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this configuration generated by our simulation can be fou
in our previous publication.13 This phase matches the dia
gram shown in Fig. 3. We identify this phase as incomm
surate because no supercell with dimensions less than
minimum simulation box dimension can be drawn that h
both first- and second-layer atoms periodically repeated
contrast to the commensurate phase.

The snapshots of the two solids are useful for visualiz
their structure but are not actual tests for their existence
direct measurement of correlation comes from the st
structure factor. Results for these calculations in the~01!
reciprocal lattice direction for the incommensurate and co
mensurate phases are shown Figs. 7~a! and 7~b!. The struc-
ture factor is normalized toNact. The locations of these
peaks give the correct lattice spacings for the diagra
shown in the Figs. 3 and 4. The peak for the commensu
solid occurs at 1.82 Å21, which gives the correct lattice
constant, 3.99 Å, for theA73A7 triangular solid. Likewise,
the peak for the incommensurate solid occurs at 1.93 Å21,
corresponding to a lattice constant of 3.76 Å, which is
correct lattice spacing for a triangular solid
0.2083 atom/Å2.

B. T50 phase diagram

Having identified the liquid, commensurate solid, and
commensurate solid phases of the second layer, we now
to find the boundaries for each of the phases. We are ab
identify the following density regions at low temperature.
low second-layer coverages, 0.1270 to 0.1750 atom/Å2, the
system is in a gas-liquid coexistence region, which cons
of a liquid droplet and a zero density gas. The equilibriu
density for the liquid is 0.1750 atom/Å2, and the layer is
uniformly covered by a liquid phase from 0.1750
0.1905 atom/Å2. Above this density, the liquid coexist
with theA73A7 commensurate solid phase discussed in

FIG. 7. The static structure factor calculated in the~01! direction
for ~a! the incommensurate solid at 0.2083 atom/Å2 and 0.67 K
with 32 particles, and~b! the commensurate solid at 0.199
atom/Å2 and 0.50 K with 32 particles. The errors are the size of
symbols.
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previous section. This LC coexistence occurs from 0.1905
0.1970 atom/Å2, and is followed by the commensura
phase between 0.1970 and 0.2032 atom/Å2. The incommen-
surate solid phase begins to form above 0.2032 atom/Å2 and
there is CIC coexistence until 0.2096 atom/Å2. Above this
density, until layer promotion to the third layer a
0.212 atom/Å2, the system is completely in the incomme
surate phase. These results are summarized in Fig. 8~a!.

Before discussing how these ranges were determined
would first like to demonstrate that finite-size effects play
unimportant role in the energy values used in the Maxw
construction. Figure 8~b! shows the energy per particle foun
using the 835 and 533 cells. Almost all of the points cal-
culated at similar densities in the two cells are consiste
The primary ‘‘size effect’’ is the limitation on the availabl
densities which may be examined for a given simulation c

Phase ranges are determined by using the Maxw
double-tangent construction, which identifies unstable
gions associated with the coexistence of two phases. A
existence region at zero temperature in the thermodyna
limit will have a total ground state energy that is th
weighted average of the two constituent phases’ energy
ues. In Monte Carlo simulations the energy in the coex
ence region will lie above the coexistence line, either b
cause the system remains in an unphysical homogen
state or because creating the phase boundary has a
energy cost.39 We may thus identify a coexistence region
the maximum range of densities in which all the intermedi
energy values lie on or above a line connecting the value
the end points. We note that this version of the Maxw
construction is somewhat different from oth
applications,19,25,20which apply the Maxwell construction to
the free energy dependence on atomic area~inverse density!.
Our method is appropriate for simulations with constant a
and varying particle number.

e

FIG. 8. ~a! Summary of phase boundaries determined from
plying the Maxwell construction to the total energy of the 835 cell.
The phases are liquid-gas~L1G!, liquid ~L!, liquid-commensurate
solid ~L1C!, commensurate solid~C!, commensurate solid-
incommensurate solid~C1IC!, and incommonsurate solid~IC!. ~b!
The energy per particle for the 533 ~circles! and 835 ~squares!
cells.
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At finite temperatures, the Maxwell construction shou
be applied to the total free energy. Unfortunately, the f
energy is not directly accessible from the PIMC simulatio
We instead make use of the fact that at very low tempe
tures the free energy and the energy are approximately
same, and become identical at zero temperature. We can
apply the Maxwell construction to low temperature ener
values to determine an effectively zero-temperature ph
diagram, provided that the values have converged to t
zero-temperature limits. To implement this procedure,
first calculated energy values for a range of second-la
densities at 200 mK. Selected energy values were reca
lated at a higher temperature, typically 400 mK, and w
seen to be within error bars of the 200 mK results. T
indicates that our 200 mK calculations are effectively ze
temperature results.

The application of the Maxwell construction to the tot
energy values calculated using the 835 box has been show
in our previous publication.13 Figure 8~a! summarizes the
results. The energy minimum was determined to occu
0.1746 atom/Å2 ~30 particles!. For comparison, Fig. 9
shows the energy calculations using the 533 cell. These
energy values have been shifted byNactemin for clarity,
whereemin5232.75460.020 K. The energy minimum oc
curs at 0.1778 atom/Å2 ~12 particles!. Note that for both
simulation cells the minimum energy per particle occurs
nearly the same coverage value, despite the fact that th
35 cell is 2 2/3 times as large as the 533 cell. In general,
we find all the energy values calculated with the two cells
be in agreement. See Fig. 8~b!.

The low density region of the second layer is known e
perimentally to have coexistence between a gas phase a
superfluid liquid phase. In order to determine the gas-liq
coverage range in our simulation, we take the gas phas
have zero density at zero temperature and thus zero
energy. Two-dimensional calculations20 confirm that this as-
sumption is correct for low temperatures. A coexistence l
can then be drawn between the beginning of the sec
layer, 0.1270 atom/Å2, and the density with the minimum

FIG. 9. The total energy found using the 533 simulation cell
with Nact58,9, . . . ,21 andT5200 mK. The dashed line is gas
liquid coexistence line. The solid line indicates a coexistence reg
terminating in an incommensurate solid phase.
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energy per particle, which occurs between 0.174 a
0.178 atom/Å2 in the 835 cell. The bestx2 parabolic fit to
the energy data around the minimum givesr0

50.1750(6) atom/Å2 for the density of minimum energy
The number in parenthesis is the error in the last digit.
similar coexistence line can be identified in the 533 cell,
Fig. 9. We find thatr050.1752(6), sofinite-size effects on
the liquid density are small. At sufficiently low temperature
this liquid phase will become superfluid, as will be discuss
below. All measured energy values for the densities betw
0.1270 atom/Å2 andr0 lie above the coexistence line, so th
system is in gas-liquid coexistence for this density range

The density of uniform liquid coverager0 can be com-
pared to experimental results. ForT<0.2 K the second-
layer heat capacity measurements4 show a probable gas
liquid region roughly between 0.13 and 0.16 atom/Å2.
Within the resolution available from the data, this phase c
terminate anywhere from 0.1600 atom/Å2 up to, but not in-
cluding, 0.1700 atom/Å2 total coverage. Since the first-laye
coverage in the experiment is between 0.120 and 0.127
these densities, gas-liquid coexistence terminates at sec
layer coverages anywhere from 0.033 to 0.050 atom/Å2. For
comparison, the gas-liquid phase terminates at the sec
layer coverage 0.0480(6) atom/Å2 in our simulation. Super-
fluidity is first observed in the torsional oscillator measu
ments at 0.174 atom/Å2. Thus, the superfluid signal, as ob
served by this technique, becomes significant at the cove
where our simulation determines that the second layer is
formly covered by the liquid phase.

The density we determine for uniform liquid coverage c
also be compared to other simulations. In the tw
dimensional calculations of Whitlocket al., the equilibrium
liquid coverage is 0.04356 atom/Å2 at zero temperature
This result is supported by the low-temperature results of
PIMC calculations.20 This is slightly below our onset cover
age, perhaps because we allow for particle motion perp
dicular to the substrate. Other calculations for helium film
also show a slight increase in the equilibrium density relat
to the 2D result. In the Monte Carlo calculation for the fir
layer of helium on graphite,22 the equilibrium density is de-
termined to be 0.0443 atom/Å2. The effects of wave func-
tion spreading will be even greater in the second heli
layer. Wagner and Ceperley’s simulation of helium adsorb
on solid hydrogen26 also demonstrated that the liquid equ
librium density increases when motion perpendicular to
substrate is allowed. They find a liquid coverage
0.046(1) atom/Å2, comparable to our result. Thus the ca
culations of films with perpendicular spreading show a tre
toward higher liquid densities, with the onset density a
proaching the 2D value as the helium-substrate potential
comes stronger. From a 2D viewpoint, this can be und
stood as a reduction of the hardcore repulsion, which allo
for closer crowding.

At the highest second-layer densities, we can identify
other unstable region in the total energy values of the 835
cell between 0.2032 and 0.2096 atom/Å2, corresponding to
the CIC mixed phase. As shown previously,13 the coexist-
ence line can be drawn between the total energy value
these two densities. The intermediate energy values lie o
above this line, so the region has coexisting phases. In
ticular, the energy value at 0.2080 atom/Å2 was found to lie

n
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completely above the coexistence line, providing an una
biguous signal for coexistence. The range we find is in go
agreement with the coexistence region 0.2030
0.2080 atom/Å2 that can be determined from the heat cap
ity peaks.5 This phase coexistence is not a product of fini
size effects. The beginning of a similar region may be id
tified between the densities 0.2032 and 0.2117 atom/Å2 in
the 533 simulation cell, Fig. 9. Phase coexistence in fa
becomes clearer in the 835 cell because we are able
examine more density values in the unstable region.

The presence of the C phase at 0.1996 atom/Å2 requires
an LC coexistence region between it and the liquid. T
region can also be identified in the 835 cell. The end points
of the LC phase are 0.1905 and 0.1969 atom/Å2. The inter-
mediate energy values lie on the coexistence line within e
bars. The LC range is in reasonable agreement with the
existence range 0.1871 to 0.1970 atom/Å2 determined from
heat capacity measurements.5 Torsional oscillator
measurements10 also indicate that the coexistence region b
gins at about 0.187 atom/Å2. The LC phase cannot be de
termined in the 533 cell due to the coarseness of the co
erage grid.

C. Other properties

Figure 10 depicts the density profiles for selected la
densities. These plots are normalized such that integra
r(z) gives the number of particles. Promotion to the th
layer can be clearly observed at the highest density sho
0.2159 atom/Å2, so we conclude that layer promotion o
curs between 0.2117 and 0.2159 atom/Å2. This is in excel-
lent agreement with the completion density of 0.2
atom/Å2 determined from the heat capacity measurement4,5

A somewhat lower value of 0.204 atom/Å2 for third layer
promotion is obtained from the isothermal compressibi
minima.1,11 Also of note, Whitlocket al.22 estimate that pro-
motion to the third layer begins at the second-layer cover
of 0.08 atom/Å2, quite close to but somewhat lower tha
our value of 0.085 atom/Å2.

FIG. 10. Density profiles for the second layer found using
533 cell, with densities 0.1694, 0.1778, 0.1863, 0.1948, 0.20
0.2117, and 0.2159 atom/Å2.
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The temperature dependence of the energy and super
density at a sample liquid density of 0.1778 atom/Å2 have
been determined. This coverage corresponds to a sec
layer coverage of 0.0508 atom/Å2. Values were calculated
using the 533 simulation cell with twelve active particles
and are illustrated in a previous publication.13 The superfluid
density is relative to the second-layer density. Both the
ergy and the superfluid density converge to the ground s
for temperatures below 0.8 K. The slow decay of the sup
fluid density at higher temperatures is a typical 2D finite-s
effect.40 The superfluid density values have beenx2 fit to
the solution to the Kosterlitz-Thouless~KT! recursion
relations.41 From the intersection of the fit and the KT tran
sition line, we estimate the transition temperature to beTc
'0.88 K. For comparison, the 2D PIMC simulation20 ob-
tainsTc50.8660.02 K at 0.0508 atom/Å2.

The specific heat of the liquid, commensurate solid, a
incommensurate solid phases can be found by differenc
the energy per particle with respect to temperature. This
shown in our previous publication.13 For the liquid phase, a
broad, low peak with a maximum value at 1.18 K was foun
This is comparable to the experimental heat capacity resu5

which have a peak at 1 K. For the commensurate solid ph
a specific heat peak at about 1.5 K was found. This is co
parable to the heat capacity measurements5 at similar density
values, which also have a peak at 1.5 K. This close ag
ment provides some additional evidence that theA73A7 C
phase occurs in the experiment. Finally, for the IC solid
peak at 0.7 K was obtained, somewhat lower than the pea
the heat capacity measurements at the same density, w
occurs at 1 K.

IV. SUMMARY

A number of recent experiments indicate that the sec
layer of helium on graphite has an interesting phase diagr
Torsional oscillator measurements detect superfluidity ov
narrow density range in this layer.10,11 Neutron scattering7–9

detects an incommensurate solid phase at high dens
Heat capacity measurements4,5 have found evidence fo
liquid-gas coexistence and the incommensurate solid ph
The heat capacity data also show the existence of an in
mediate phase between the liquid and incommensurate s
which is possibly a commensurate solid. The existence
this commensurate solid phase would explain the disapp
ance of superfluidity at higher second layer coverages. M
tivated by these experiments, we have undertaken a sim
tion of this layer.

In order to study the second layer with a Monte Ca
simulation for a range of temperatures, it is necessary
develop a method that incorporates both particle perm
tions and the effects of the substrate and the solid first la
on the second. Permutations are necessary to obtain th
perfluid phase. The effects on the solid first layer must
included since the commensurate second layer solid is
tially registered with respect to the first layer. First-layer a
substrate effects also play a role in the formation of the
commensurate solid phase, which replaces the commens
phase before layer promotion begins.

We have developed a path-integral Monte Carlo meth
that includes the above features. Particle permutations w

e
,
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included in the simulation using a method developed for b
helium.29 We have shown that the helium-helium an
helium-graphite interactions can be incorporated into
simulation by using effective interactions found from the e
act solutions for the interacting part of the appropriate d
sity matrices. Realistic helium-helium and helium-graph
potentials are used to find these effective interactions.
the helium-graphite effective interactions, we have sho
how this solution may be approximated so that off-diago
matrix elements may be efficiently and accurately includ
in Monte Carlo sampling. The interaction of the second la
of helium atoms with the solid first layer was approximat
by placing first layer atoms at triangular lattice sites with
lattice spacing that gives the completed first layer dens
These atoms were located at a fixed height above the
strate, given by the minimum of the effective helium
graphite interaction. Configurations of these atoms were
sampled, which allowed us to scan second layer dens
with a finer grid. Therefore, we study the second layer ato
under the influence of their mutual interactions and a st
potential produced by the frozen graphite substrate and
frozen first layer helium atoms. This approach ignores effe
on the second layer from the zero point motion of the fi
layer solid and first layer compression effects. We feel thi
a reasonable approximation because the relatively high
bye temperature of the completed first layer31 means that it
will be relatively stiff for the temperatures of our simulatio
Compression effects on the first layer by the second are m
important for low second layer densities,15 below the range
of our simulation.

Using the above simulation method, we were able to id
tify, in order of increasing density, superfluid liquid,A7
3A7 commensurate triangular solid, and incommensu
triangular solid phases from particle configurations and st
structure factor calculations. We also calculated the spe
heat for each of these phases and observed peaks in ge
agreement with experiment.

The density ranges at effectively zero temperature of e
of the second layer phases and their coexistence regions
determined using the Maxwell construction. We found tha
low densities, the layer is phase separated into a liquid d
let and a zero density gas. The range of this phase is 0.1
to 0.1750 atom/Å2. Gas-liquid coexistence ends at the eq
librium density for the liquid phase. This occurs
tt.
k

e
-
-
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0.1750 atom/Å2, which is the density with the minimum
energy per particle. This density was found to be insensi
to finite-size effects, and is in excellent agreement with
onset of superfluidity determined by torsional oscillator me
surements. It is also consistent with heat capacity meas
ments. We demonstrated that the liquid phase in our sim
tion is superfluid, and we determined that the transit
temperature was close to the value determined for a pu
2D superfluid at the same density.

The helium layer is uniformly covered in our simulatio
by the liquid phase from 0.1750 to 0.1905 atom/Å2, at
which point liquid-commensurate solid phase coexiste
begins. The onset of this coexistence terminates superfl
ity, since the growth of the solid phase disrupts the conn
tivity required to detect the superfluid. Experimental
liquid-commensurate solid phase coexistence has been d
mined to begin at 0.1870 atom/Å2 by both torsional oscilla-
tor and heat capacity measurements. We determined tha
liquid phase is completely replaced by theA73A7 commen-
surate solid for densities above 0.1970 atom/Å2, in good
agreement with heat capacity measurements. Phase coe
ence between the commensurate and incommensurate
phases begins at 0.2032 atom/Å2. For coverages above
0.2080 atom/Å2, the incommensurate solid is the only pha
occurring until layer promotion. These ranges for the so
coexistence and the incommensurate solid are in agreem
with the heat capacity measurements. The density range
all the second layer phases described above are summa
in Fig. 8~a!. Finally, we observed layer promotion for cove
ages above 0.2117 atom/Å2, in excellent agreement with ex
periment.
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