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We present a numerical method for calculating the ground state correlations and low-lying excitations in a
discrete and finite many-body system. The method combines the advantages of real space and momentum
space renormalization group ideas and is similar in many respects to the correlated basis functions perturbation
theory, but is nonperturbative in nature. To illustrate the method, we apply it to the one-dimensional Heisen-
berg antiferromagnetic spin-12 chain.@S0163-1829~96!09445-3#

INTRODUCTION

The numerical methods currently in use to tackle the
quantum many-body problem of condensed matter systems
have some drawbacks. Using exact diagonalization tech-
niques, one expresses the Hamiltonian matrix in a conve-
niently chosen many-body basis; such calculations can only
be performed for very small-size systems due to the expo-
nential growth of the size of the matrix with the system size.
Quantum Monte Carlo techniques which overcome this dif-
ficulty by sampling only the important part of the Hilbert
space are best suited for ground state and finite-temperature
properties of bosonic systems. Using such methods it is very
difficult to extract information about the ground state or ex-
cited states of fermion systems because of the ‘‘fermion sign
problem.’’

The renormalization group~RG! method was introduced
by Wilson1 and was very successfully used to obtain the
low-lying excitations in the Kondo problem. This technique
overcomes the problem of the exponential growth of the Hil-
bert space by carefully selecting the states kept at each itera-
tion and can be used for either bosonic or fermionic systems.
Shortly after Wilson’s solution to the Kondo problem real
space RG methods were applied to quantum lattice models.2

While good results were generally obtained for the total
ground state energy of the system, the ground state wave
function was not well described. More recently a density
matrix RG algorithm was proposed and performed very well
in the case of one-dimensional~1D! lattice models.3 How-
ever, this method uses critical features of the 1D lattice and
the prospects for applying the technique in higher dimen-
sions are not very good.

In the real space RG approach it is very difficult to de-
scribe correlations existing over a length scale greater than
the block size. This led some authors to propose RG trans-
formations in momentum space.4,5 In these calculations the
low-lying excitation energies and long-range correlations are
well described; however, the short-range correlations and the
correlation energy is not described accurately, as expected.

In this paper we present a method which combines the
advantages of real space RG ideas to describe the short-range
correlations and of momentum space RG ideas for an accu-

rate description of the long-range correlations. We must first
take care of the short-range correlations in the ground state,
since these correlations contribute the most to the energy.
Moreover, we expect that these short-range correlations can
be described rather accurately by incorporating a relatively
small part of the entire Hilbert space because of their local
nature. To this end, we make use of techniques developed in
the context of quantum chemistry.6 An adaptive state selec-
tion algorithm is used to select a set of many-body basis
functions that yields as low a variational ground state energy
as possible, given the constraint on the number of such basis
states that can practically be handled. To obtain a satisfying
solution to the problem we must also describe the low-lying
excitation spectrum and long-range correlations accurately.
Thus we define a set of correlated basis functions obtained
by acting with suitable correlation operators on a few low-
lying states found in the previous step which generate long
wavelength low-lying excitations. We proceed by perform-
ing a variational calculation in the subspace spanned by the
correlated states. This step can also correct the long distance
behavior of the correlation functions. Furthermore, we ex-
pect the intermediate correlations to interpolate smoothly be-
tween the short-range and long-range correlations which
have been described accurately. The present method re-
sembles the correlated basis functions perturbation theory
~CBFPT! which has been successfully applied to study
ground state and low-lying excitations in liquid helium.7 In
CBFPT one defines a set of correlated states and expresses
the Hamiltonian in this basis. The diagonal part of the
Hamiltonian is used as the unperturbed pieceH0 and the
off-diagonal part of the Hamiltonian is treated by perturba-
tion theory. CBFPT works because the short-range correla-
tions are taken into account inH0. The difference between
the exact energy and the ground state energy ofH0 is small
and can be accounted for by low-order perturbation theory.
Our approach can be viewed as a numerical implementation
of the ideas behind CBFPT but is nonperturbative and varia-
tional. In addition, the CBFPT is a semianalytic method
which involves an approximate calculation of the matrix el-
ements of the Hamiltonian whereas in the present method
they are calculated exactly.
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DESCRIPTION OF SHORT-RANGE CORRELATIONS

We wish to illustrate the method on a simple model prob-
lem, the 24-site Heisenberg spin-1

2 chain with periodic
boundary conditions. Our method does not depend in any
critical way on the dimensionality of the problem, but 1D
systems are stringent tests, since the quantum fluctuations are
especially strong in one dimension. The Hamiltonian is

H5J(
i51

N

$Si
zSi11

z 1 1
2 ~Si

1Si11
2 1Si

2Si11
1 !%, ~1!

whereN524 andSN11
a [S1

a, a5z,6.
Our goal is to describe well both the ground state corre-

lations and the low-lying excitations. To achieve this, one
must describe short-range and long-range correlations
equally well. Our method thus consists of two steps. In the
first step, we wish to obtain as good short-range correlations
as is possible given the necessarily limited computer re-
sources. These short-range correlations must be treated first
since they contribute most of the energy, and this is best
done-in real space. Therefore, we chose to work with the real
space basis:

$um&% i51
2N 5$us1 ,s2 , . . . ,sN&%s i5↑,↓ ~2!

or what is equivalent, our reference HamiltonianH0, which
is diagonal in that basis, isH05( i51

N Si
zSi11

z . It is clear that
the ultimate accuracy of the method depends on a good
choice of the reference HamiltonianH0. However, as our
results demonstrate, our approach gives good results even
when the mean-field or classical reference HamiltonianH0 is
a relatively poor starting point as is the case here. We would
expect this choice to be much better in higher dimensions,
where a mean-field can give a qualitatively correct descrip-
tion of the ground state.

In order to reduce the number of states one has to keep
track of, it is advisable to make use of the symmetries of the
Hamiltonian. We have used translation invariance and con-
servation of totalz component of the spin, but have ignored
parity, for simplicity. Moreover, we will consider only the
zero magnetization~Sz

tot50, equal number of up and down
spins! and the zero total momentum sector~k50!. In what
follows, the number of states mentioned is the number of
inequivalent basis functions under these two symmetry op-
erations in theSz

tot50, k50 sector. Our basis states$un&% for
this symmetry sector are thus linear combinations of the
states$um&% in Eq. ~2!.

The states$un&% are now classified relative to their
matrix elements ^nuH0un&[En . The Néel state
~1/&!$u↑↓↑↓, . . . ,↑↓&1u↓↑↓↑, . . . ,↓↑&% is the lowest energy
state, withENéel526J @each antiferromagnetic bond con-
tributes2~J/4! and there are 24 of them#. From now on we
shall use units whereJ51. The excited states are obtained by
flipping an even~to conserveSz

tot! number of spins. The
states just above the Ne´el state have two nearest neighbor
spins flipped, namely two ferromagnetic bonds costing each
an energy of12. Their total energy is thus25. The next high-
est states have four ferromagnetic bonds, and so on. The
number of states and their energy relative toH0 are given in
Table I. It is important to realize that the states in adjacent

entries in Table I can be obtained from one another by local
transformations, since they differ in energy by 1.

Next, we first retain all the states below or at a certain
energy cutoffEc and diagonalize the full HamiltonianH in
that restricted subspace. All the diagonalizations in this work
were carried out with the Davidson algorithm.8 To the extent
that the eigenstates of the mean-field Hamiltonian give an
accurate representation of the local correlations in the true
many-body ground state, and in the absence of any other
information about the ground state correlations, this is a rea-
sonable selection of the states to keep in order to describe the
short-range correlations in the system. But since our choice
of states ignores the effect of the off-diagonal Hamiltonian
matrix elements, it is clearly not optimal. However, after the
diagonalization of the full Hamiltonian in that restricted sub-
space, we do have some information about the effect of off-
diagonal matrix elements. We use this information to im-
prove on our first guess to find a better set of configurations
to describe the short-range correlations in the system. We
must contend ourselves with an approximate solution to the
problem of finding the bestNs configurations out of theNH
configurations in the full Hilbert space, since an exact answer
to this combinatorial optimization problem is of course out
of the question. We thus make use of the clever basis set
reduction and state selection techniques developed in quan-
tum chemistry.6 It is important to realize that one must
choose theNs spin configurations to describe the short-range
correlations in an adaptive fashion, since whether or not one
should keep a certain configurationuai& depends to some
extent on what other spin configurations are in our set$ua&%
~our internal space!. To illustrate this point, consider the fol-
lowing situation: suppose we have picked two configura-
tions ua1& and ua2& from our configuration set$ua&% and sup-
pose we have to throw away one of them, so we must decide
whether we want to keepua1& or ua2&. If the difference in
energy of these two states is very large, for example takeua1&
to the Néel state andua2& the state withSz

tot50 and with the
largest number of ferromagnetic bonds, then one should
clearly keep the lowest energy state, independently of what
other states are present in the set$ua&%. But now suppose that
ua2& has somewhat higher energy thanua1&. The contribution
of any given configuration from outside the set to a given

TABLE I. States and their energy relative toH0.

Energy Number of states

26 1
25 11
24 305
23 3027
22 13626
21 30492
0 35594
1 21780
2 6813
3 1009
4 61
5 1
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state which is a linear combination of the states in the set is
not to be judged by simply looking at how far its energy lies
from the energy of the state. As it will become clear in the
following parts of the paper, what matters is the ratio of the
Hamiltonian matrix element between the configuration and
the state to their energy difference. That implies that if the
coupling ofua2& to the whole set$ua&% is larger to that ofua1&
to the whole set, then it might be preferable to keep the
configurationua2&, despite its higher energy.

Let $ua&% denote the set ofNs configurations retained~in-
ternal space6!, uc~0!& the variational ground state in the$ua&%
subspace of energyE~0!, and $ub&% the set of states not re-
tained~external space6!. We have implemented in this work
the following adaptive state selection algorithm. We first es-
timate the correctionudc& from the external space to the ap-
proximate eigenstateuc~0!& by first order perturbation theory,
using as unperturbed Hamiltonian

H̃05uc~0!&E~0!^c~0!u ~3a!

and

H̃15H2H̃0 ~3b!

as the perturbation. One thus has

uc~0!&[(
a

caua&, ~4a!

udc&[(
b

cbub&, ~4b!

where the coefficients$ca% were obtained by diagonalizing
the Hamiltonian in the internal space and we wish to esti-
mate the coefficients$cb%. To first order inH̃1, one has

cb5
1

E~0! (
a

ca^auHub&. ~5!

Let Ms be the number of spin configurations in the external
space which have nonzero matrix elements with any of the
configurationsua& in the internal space. The perturbative
wave functionuc~1!&5uc~0!&1udc& is then a linear combination
of Ns1Ms states. We can now select a new internal space
$ua8&% by choosing theNs configurations inuc

~1!& which have
the largest~in magnitude! coefficients. To take full advan-
tage of the variational freedom on the coefficients$ca8%, the
wave function is relaxed, by diagonalizing the Hamiltonian
in the new, improved internal space. The procedure can be
repeated a number of times, until no further improvement in
the ground state energy results. This algorithm does not al-
ways converge to a unique internal space$ua&%, since our
state selection procedure is based on an approximate calcu-
lation of the effect of the external space. We have observed,
in some cases, that the procedure oscillates between two sets
of configurations. If one chooses one of the two sets, our
state selection procedure picks as the new internal space the
other set. After the wave function is relaxed, the state selec-
tion procedure gets us back to the original set. We have not
found cases where the algorithm goes from setS1 to setS2,
to setS3 and then back to setS1 or more complicated limit
cycles. This is not a serious practical problem, however,
since in all the cases where these oscillations have occurred,

the difference in the variational ground state energy between
the two possible internal spaces was in the fifth or sixth
decimal place. One simply has to be careful to choose the
appropriate termination criterion for the iterative procedure.
We always save the previous internal space$ua&% and the
coefficients of the variational wave function$ca% to disk. We
stop iterating if the new internal subspace is identical to the
old one or if the variational energy goes up from the previous
iteration. In that case, we must discard the current wave
function and retrieve the previous one from disk.

There is a vast number of variations of that simple algo-
rithm that can be used. For instance, one need not truncate
back to the same numberNs of states. One can use this
procedure to increase the size of the internal space byns
configurations, truncating toNs1ns states in the state selec-
tion procedure. We have tried a few variants. Our experience
is that internal spaces with lower variational energies are
obtained if at every step of the adaptive state selection pro-
cedure the internal space changes little, i.e., if the search
proceeds in small steps. Practically of course, some compro-
mise must be made, since it obviously takes more computer
time to find a near optimal solution if the search proceeds in
very small steps.

Before we describe, and in order to motivate the second
step of our method, it is interesting to calculate how much of
the correlation energy, i.e., the difference between the exact
ground state energy and the energy of the Ne´el state, one can
recover as a function of the number of states kept with the
adaptive procedure we have just described.

The results are shown in Fig. 1, and were obtained as
follows. For a number of states kept larger than 3344, we
first kept all the states up to an energy 3 above the Ne´el state
and used the adaptive algorithm to find a better set of 3344
configurations. Then the number of configurations was in-
creased by 500, and the set of configurations was optimized
with the adaptive algorithm until the ground state energy
could not be lowered anymore keeping the number of states
fixed at 3844. The number of configurations was then in-
creased by 500, and so on. For a number of states kept less
than 3344, we started with our best internal space with 3344
configurations, discarded the 500 states with the smallest

FIG. 1. The amount of correlation energy recovered as a func-
tion of the number of states kept in the internal space~circles! for
the 24-site antiferromagnetic Heisenberg spin-1

2 chain in theSz
tot

50 and zero total momentum sector. The straight line is the exact
result. The Hilbert space contains 112 720 states.
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weight in the wave function. We used the state selection
method to improve on this initial internal space until the
ground state energy could not be lowered anymore keeping
the number of states fixed at 2844. The 500 configurations
with the smallest weight in the wave function were discarded
and so on until the number of configurations in the internal
space was reduced to 344.

One can see from the figure that the initial rate of recov-
ery of correlation energy as a function of the number of
states kept is very fast. However, it is also clear from the
figure that past 4000–5000 states kept, the recovery rate be-
comes exceedingly slow. One can see this even better for a
larger spin chain. Figures 2 and 3 display our results for a
40-site and 60-site Heisenberg chain, which were obtained in
a similar fashion as the results for the 24-site chain shown in
Fig. 1, except that we initially started with all the states up to
an energy 2 above the Ne´el state. It is striking that the
amount of correlation energy missing at the point where the
rate of recovery of correlation energy becomes exceedingly
slow gets larger as the system size increases. Whereas one
can easily recover about 95% of the correlation energy for

the 24-site chain with the adaptive state selection in real
space we have described, that number is only about 80% for
the 40-site chain and about 65% for the 60-site system. This
underscores the incapacity of the real space procedure to
yield all of the low-lying states of the system. This indicates
that we must change the strategy of state selection to accel-
erate the convergence rate. This is going to be our next step
which is explained in the next section.

Before we introduce the improvement on our method, let
us discuss some of the reason for the shortcomings of the
real space method. The number of spin configurations with a
given excitation energy, say 3 above the Ne´el state, increases
exponentially with the size of the system. For instance in
Table I, we see that there are 3344 configurations with an
energy 3 above the Ne´el state for a 24-site chain. That num-
ber is 55 233 for a 40-site chain. Since it is better to keep
states at an energy, say 3 above the Ne´el state than to keep
states at an energy, say 9 above the Ne´el state~it is only
when the states are relatively close in the energy that the
choice is not obvious!, and because of the exponential in-
crease in the number of states with energy and system size,
the state selection procedure eventually gets stuck at some
maximum excitation energy for these larger systems, which
corresponds to some maximum number of nearest-neighbor
spin flips. Thus only correlations up to some length scale,
significantly smaller than the system size for these larger,
40-site and 60-site systems can be taken into account in the
real space, adaptive state selection procedure, and the miss-
ing correlation energy comes from the spin correlations on
larger length scales. We thus expect, as the results displayed
in Figs. 1–3 demonstrate, that the number of missing low-
lying states increases as the size of the system increases. One
would also expect that the gap from the approximate ground
state that results from the real space step of our method to
these other low-lying states gets smaller as the system size
increases.

The lowest energy states obtained by diagonalizing the
Hamiltonian in the internal space generated by the adaptive
state selection procedure are completely decoupled. Since it
would require adding an exponentially larger number of
higher energy spin configurations to significantly improve on
this initial step, the best strategy given finite computational
resources is to generate new low-energy states that couple to
the correlated wave functions we have obtained and are lin-
early independent of them. If one has some knowledge about
the collective modes, or long wavelength modes in the sys-
tem, one can explicitly construct such low-lying states from
the correlated states obtained by diagonalizing the Hamil-
tonian in the internal space.

One further comment about the excitation spectrum is in
order. Whereas our results for the ground state energyE0 are
variational, those for the excitation spectrum, i.e., the differ-
ences Ei2E0 for the excited states of energyEi ,
i51,2,3, . . . , arenot. We found that for a given computa-
tional effort ~number of states retained!, one gets better re-
sults for the correlation energy than for the first excited state,
although not by a lot in this rather small size system. It is due
to the fact that for the 24-site chain we do not have really
long wavelength fluctuations. The energy difference of about
0.7 between the first excited state and the ground state, indi-

FIG. 2. The amount of correlation energy recovered as a func-
tion of the number of states kept in the internal space~circles! for
the 40-site antiferromagnetic Heisenberg spin-1

2 chain in theSz
tot

50 and zero total momentum sector. The straight line is the exact
result. The Hilbert space contains approximately 3.43109 states.

FIG. 3. The amount of correlation energy recovered as a func-
tion of the number of states kept in the internal space~circles! for
the 60-site antiferromagnetic Heisenberg spin-1

2 chain in theSz
tot

50 and zero total momentum sector. The straight line is the exact
result. The Hilbert space contains approximately 231015 states.
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cates that the excitation is rather local. This is clearly seen in
the expectation value ofN21( iSi•Si1 l , l51, . . . ,N in the
two states. In a larger system, the long wavelength part of the
excitation spectrum obtained with this real space method
alone would be even a poorer approximation to the correct
low-lying spectrum.

Among the large number of variations in the adaptive
state selection algorithm, the internal space for the 24-site
chain used as a starting point for the momentum space step
of our method was obtained as follows: we first kept all the
states up to an energy 3 above the Ne´el state, a total of 3344
states, and used the adaptive procedure described above to
select a better set of 3344 states. We have not tried, in this
particular case, to start with a smaller set of configurations
and increase the number of states kept progressively. In
Table II, we compare the configuration sets obtained by
keeping all states up to an energy 3 above the Ne´el state and
the internal space that results when the state selection tech-
nique is applied. The difference is quite striking, about half
of the states at an energy 3 above the Ne´el state are discarded
in favor of higher excited states, and the percentage of the
correlation energy recovered goes from 89.7% to 95.5%.
Since we cannot find all the eigenvectors in the internal
space, we only keep then correlated states of lowest energy,
with n much smaller than 3344, the dimension of the internal
space. In this work, we have usedn520 correlated states.

DESCRIPTION OF LONG-RANGE CORRELATIONS

The next step in the method is designed to correct the
long wavelength behavior of the wavefunction by carefully
selecting the excited states that are retained in the calcula-
tion. The energy of a given state is simply the number of
lattice sitesN times the expectation values ofSi•Si11, for
any i . It only involves nearest neighbor spin correlations.
Two eigenstates that differ very little in energy will exhibit
very similar short-range spin correlations and thus will only
be significantly different~they have to be orthogonal! for
long range correlations. Since the Hamiltonian is local,
namely only couples directly nearest-neighbor spins, the cor-
relation ~or equivalently, interaction! of spins that are far
apart involves high orders of perturbation theory and thus the
highly excited states contribute more significantly to the low-
lying excitation spectrum than to the local properties. Let us
denote$uF i&% i50

n21 the lowestn correlated states obtained by
diagonalizing the Hamiltonian in the internal subspace using
the adaptive state selection method detailed earlier. We gen-
erate new states by using the following two-magnon correla-
tion operators:

Oc~q![ (
l50

N21

cos~ql ! (
m51

N

Sl1m
1 Sm

2 , ~6a!

Os~q![ (
l50

N21

sin~ql ! (
m51

N

Sl1m
1 Sm

2 , ~6b!

where q52p i /N, i50, . . . ,N/2. Then, one carries out a
variational calculation in the space spanned by

$uF i&% i50
n21, $Oc~q!uF i&% i50

n21, $Os~q!uF i&% i50
n21

for all 0<q<p, and with, obviously, only$Oc(q)uF i&% i50
n21

whenq50 or p. Since one hasN/211513 wave vectorsq,
the size of the generalized eigenvalue problem that must be
solved~the states are not orthogonal to one another! is [2(N/
211)2211]n525n.

The low-energy spectrum of the states$uF i&% i50
n21,

$Oc(q)uF i&% i50
n21, $Os(q)uF i&% i50

n21 is shown in Figs. 4 and 5.
In Fig. 4, the results were obtained without the adaptive state
selection procedure, namely the internal space was generated
using an energy cutoff only. Figure 5 shows the correspond-
ing results using the improved internal space, generated with
the adaptive algorithm. Figures 4~a! and 5~a! show the low-
lying spectrum of the states obtained with the real space
method$uF i&% i50

n21 while Figs. 4~b! and 5~b! show the low-
lying spectrum of the states$Oc(q)uF i&% i50

n21 and
$Os(q)uF i&% i50

n21. The two figures are remarkably similar
@the lowest two states in Fig. 4~b! are almost degenerate
whereas there is a larger gap in Fig. 5~b!#, and show explic-
itly the failure of the real-space approach to generate all of
the low-lying states in the system. In particular, the three
states that have an energy between that ofuF0& and uF1&, the
two lowest states produced by the real-space proce-
dure, are in order of lowest energy,Oc(q5p) uF0&,

TABLE II. Comparison of configuration sets.

Energy
Number of states

without state selection
Number of states
with state selection

26 1 1
25 11 11
24 305 275
23 3027 1500
22 0 1386
21 0 171

FIG. 4. ~a! Energy of the states$uF i&% i50
n21 up to28. The inter-

nal space was generated without the adaptive state selection. All
spin configurations below or at an energy 3 above the Ne´el state
were kept. ~b! Energy of the states $Oc(q)uF i&% i50

n21,
$Os(q)uF i&% i50

n21 for all wave vectorsq up to an energy of28. The
two lowest states are almost degenerate and are difficult to separate
in the figure. They correspond toOc(q5p) uF0& and
Oc(q511p/12)uF0& whereuF0& is the lowest state in~a!. The third
lowest state isOc(q55p/6)uF0&. The other statesOc(q5p)uF i&,
i52,3, etc. are higher in energy as are the statesOc(q) uF1&,
q53p/4, 2p/6, . . . .
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Oc(q511p/12)uF0&, and Oc(q55p/6)uF0&. These low-
energy states couple to bothuF0& and uF1& and thus do
change the excitation spectrum significantly. Moreover,
since they are at an energy below the first excited state pro-
duced by the real-space procedure, the excitation spectrum
obtained in the first step of the method is thus totally unre-
liable. It is only when the states neglected in the calculation
have an energy high relative to the low-lying states we are
interested in that they do not alter qualitatively the low-lying
spectrum, since their effect is to shift all the low-lying states
by essentially the same amount. Because there are more
wave vectorsq in a larger system and they are more closely
spaced, we would expect there would be even more states
$Oc(q)uF i&% i50

n21 and$Os(q)uF i&% i50
n21 very close to the low-

est statesuF0& and thus we would expect the correlation en-
ergy recovered in the second step of the method to increase
as the size of the system gets larger. Note also that since
there are more of these low-lying states in higher dimen-
sions, and since the adaptive state selection procedure would
produce a better starting point in two or three dimensions, we
expect this method to be better suited to the study of corre-
lated many-body systems in two or three dimensions.

Some comments are now in order. Whereas the states in
adjacent entries in Table I can be obtained from each other
by applying local operators, as was mentioned previously,
the correlation operators in Eqs.~6a! and~6b! are nonlocal in
space, in that they involve spins at any separation
150, . . . ,N21. Suppose that the states$uF i&% i50

n21 obtained
by the adaptive state selection procedure contain states with
energies up toEmax above the Ne´el state. By applying the
correlation operators to theuFi& one generates states with
energies up toEmax12 above the Ne´el state. To generate
these types of configurations with the local, real space adap-
tive procedure would require much more computational re-
sources.

The procedure of generating new states by applying op-
erators to approximate eigenstates obtained in a previous
step or iteration is similar to Wilson’s renormalization group

approach to the Kondo problem.1 The operators used by Wil-
son however have properties that do not generalize to the
present situation. Their Hermitian conjugates annihilate the
correlated states and their commutation relations were
simple. This allowed Wilson to carry out an unlimited num-
ber of iterations while only keeping track of the matrix rep-
resentations of relatively few operators.

We could imagine diagonalizing the Hamiltonian
in the space spanned by$uF i&% i50

n21, $Oc(q)uF i&% i50
n21,

$Os(q)uF i&% i50
n21 and then truncating to the lowestn states,

say $uF i8&% i50
n21 and generating new states by applying the

correlations operators to theuF i8& ’s and so on, by analogy
with Wilson’s approach to the Kondo problem.1 However, in
order to carry out these renormalization steps, we need ma-
trix elements of increasingly long strings of operatorsOc(q),
Os(q) between ouruFi&’s. Since the computation of these
matrix elements is the most time consuming step of the al-
gorithm and the complexity of the computation increases
rapidly with the length of the operator strings, there is a
practical limit to the number of renormalization group itera-
tions that can be carried out. However, this is not such a high
price to pay, since we are starting from highly correlated
states, and only a very few iterations are needed to obtain
excellent results. We have only carried out one iteration, and
this is already enough for the 24-site Heisenberg chain. It
may be possible, using all symmetries and clever tricks, to
carry out two such iterations for realistic problems, since the
time consuming part of the method, generating the states
(mSl1m

1 Sm
2uF i&, l50, . . . ,N21, i50, . . . ,n21, can be

done completely in parallel, and thus can be implemented
very effectively on massively parallel supercomputers. This
is another attractive feature of the method. Instead of the
Wilson RG procedure described above, we could also gener-
ate a correlated basis

$uF i&} i50
n21, $Oc~q!uF i&} i50

n21,

$Os~q!uF i&} i50
n21, $Oc~q!Oc~q8!uF i&% i50

n21,

$Os~q!Oc~q8!uF i&% i50
n21,

etc. and use the adaptive state selection algorithm detailed
earlier to retain a near optimal subset of such states. But once
again, the computational complexity of calculating the states
generated by applying long strings of correlation operators
limits what can be done in practice.

The results of the variational calculation in the space
spanned by the states$uF i&% i50

n21, $Oc(q)uF i&% i50
n21,

$Os(q)uF i&% i50
n21 are shown in Figs. 6~no adaptive state se-

lection! and 7~with adaptive state selection!, where they are
compared to the exact results and to the results obtained with
the real space step only. The two figures are again remark-
ably similar. The state selection procedure affords a better
description of ground state correlations, and may undoubt-
edly yield larger benefits for a system whose Hilbert space is
considerably larger than the one we have been studying. The
excitation spectrum up to an energy 1 above the ground state
is well described in both cases where the momentum space
step is used, and not as well without it. As noted earlier, in a
larger system with genuinely long wavelength excitations,
the improvement brought about by the momentum space step
should be much more significant. At higher energy, the situ-

FIG. 5. ~a! Energy of the states$uF i&% i50
n21 up to28. The inter-

nal space was generated with the adaptive state selection, as de-
scribed in the text.~b! Energy of the states$Oc(q)uF i&% i50

n21,
$Os(q)uF i&% i50

n21 for all wave vectorsq up to an energy of28. The
two lowest states are better separated than in Fig. 4~b! and corre-
spond toOc(q5p) uF0& andOc(q511p/12)uF0&, whereuF0& is the
lowest state in~a!. The third lowest state isOc(q55p/6)uF0&.
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ation degrades, but this is to be expected, since we have only
carried out one RG iteration in momentum space. The states
at energies above 1 would mix strongly with the states ob-
tained by applying two correlation operators to the
$uF i& i50

n21% which would be in the same energy range. This
brings us to a limitation of the method, namely the energy up
to which the excitation spectrum is well described depends

on how high in energy the states obtained by applying two
correlation operators lie. Only states below the energy of the
lowest of these states can be correctly described. At higher
energy, the results are unreliable.

We have been able to include all momentaq. This comes
from the fact that the time consuming part of the calculation
is the evaluation of the matrix elements such as
(m,m8^F i uSl 81m8

2 Sm8
1 Sl1m

1 Sm
2uF j& for all l and l 8. Carrying

out the Fourier transform for oneq or all of them is an
insignificant overhead. In this case we could have used in-
stead the correlation operators

O~ l !5 (
m51

N

Sl1m
1 Sm

2 ~7!

for l50, . . . ,N21, namely the real space version of the
operatorsOc(q) andOs(q) of Eqs. ~6a! and ~6b!, and ob-
tained the same answer. For larger systems, however, with
many more wave vectors, it may not be possible to solve the
generalized eigenvalue problem with dense overlap and
Hamiltonian matrices that results when keeping all wave
vectors. In that case it is better to do the calculation in mo-
mentum space with the operatorsOc(q) andOs(q) of Eqs.
~6a! and ~6b! and keep as many low-energy states as practi-
cal. Or better yet, one could select the appropriate states with
an adaptive algorithm as we have use in the real space part of
our method, but we have not implemented this idea in the
present work.

It turns out that the states generated in the way described
above are linearly dependent when keeping all wave vectors
q. This is because the operatorO( l50) of Eq. ~7! acting on
a stateuFi& gives the number of up spins times the same state
uFi& since all the configurations in the stateuFi& have the
sameSz

tot . This has the unfortunate effect of making the
Cholesky decomposition of the overlap matrix in the solution
of the generalized eigenvalue problem singular. This prob-
lem may also occur in larger systems, even when not all
wave vectors are kept, but many correlated states are in-
cluded. In this case some states may be nearly linearly de-
pendent and the Cholesky decomposition may become un-
stable. In any event, when solving a generalized eigenvalue
problem, it is a good idea to carry out a singular value de-
composition of the overlap matrix to check for linear depen-
dencies among the basis vectors. The overlap matrixS is
decomposed asS5UWVT, with U, V orthogonal matrices
andW a diagonal matrix containing the singular values. We
keep only as many singular values as is possible for a nu-
merically stable solution to the eigenvalue problem, using
the columns of the matrixU corresponding to the most im-
portant singular values as the new basis in which we carry
out the diagonalization. Ifui denotes thei th column of the
matrix U, then the new overlap matrixS̃ and Hamiltonian
matrix H̃ have matrix elementsS̃i j5u i

TSuj andH̃ i j5u i
THuj ,

respectively, whereui anduj are such that the singular val-
uesWi andWj are larger than some thresholde. We have
explicitly checked that the energy spectrum obtained by re-
moving the small singular values when all wave vectors are
kept agrees with the spectrum obtained with the same

FIG. 6. ~a! The exact result for the energy spectrum of the
24-site antiferromagnetic Heisenberg spin-1

2 chain in theS
tot50 and

zero total momentum sector. Also shown is the ground state energy
E~0!. ~b! The spectrum obtained with the present method, without
using the adaptive state selection procedure. The internal space con-
sists of the 3344 states with the lowest energy.E~0! is the varia-
tional ground state energy.~c! The spectrum obtained without the
momentum space step.E~0! is the variational ground state energy
obtained by diagonalizing the Hamiltonian in the space of the 3344
states of lowest energy.

FIG. 7. ~a! The exact result for the energy spectrum of the
24-site antiferromagnetic Heisenberg spin-1

2 chain in theS
tot50 and

zero total momentum sector. Also shown is the ground state energy
E~0!. ~b! The spectrum obtained with the present method using the
adaptive state selection procedure. The internal space consists of the
3344 states with the largest coefficients in the trial ground state
wave function chosen with the algorithm described in the text.E~0!
is the variational ground state energy.~c! The spectrum obtained
without the momentum space step.E~0! is the variational ground
state energy obtained by diagonalizing the Hamiltonian in the opti-
mized internal space of 3344 states selected by the adaptive algo-
rithm.
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method but discarding at the outset the states withq50,
which we know to be linearly dependent with the other
states.

The accuracy of the results will of course depend on a
judicious choice of the correlation operators. They must ob-
viously not change the quantum numbers of the states
$uF i&% i50

n21. They ought to be nonlocal in space to effectively
correct the long-range behavior of the wave functions and
must be chosen with some knowledge about the nature of the
low-lying excitation spectrum. The long-range behavior of
the ground state wave function determines the long wave-
length dispersion relation of the collective modes in the sys-
tem. Our choice of the correlation operators was motivated
by the fact that the low-energy excitations are long wave-
length magnons which can be obtained by applying a spin
deviation operator in momentum space on the Ne´el state and
that one needs two such magnons to preserve the magnetiza-
tion and total momentum of the states. Including operators
that create higher excitations, namely operators with more
than oneSi

1Sj
2 pair, would of course improve our results,

especially the excitation spectrum at energies 1 above the
ground state and higher as noted previously, but the com-
plexity of the calculation of the matrix elements increases
rapidly with the number ofSi

1Sj
2 pairs, and this imposes

practical limits on what can be done. This is not surprising,
since including such operators is akin to carrying out more
renormalization group iterations.

In 4He, the linear in momentum part of the dispersion
relation of the phonon spectrum is due to the long range
behavior of the two-body correlation function, or equiva-
lently the asymptotic behavior of the Jastrow correlation fac-
tor f (r ) as r→`. However, the slope of the phonon spec-
trum, the sound velocity, does depend on the short-range
correlations, and therefore a quantitative description of the
excitation spectrum requires a good description of the short-
range correlations as well as the proper asymptotic behavior
of the wave functions.7

CONCLUSIONS

We have presented a technique to tackle the quantum
many-body problem which combines the advantages of real

space RG ideas for the accurate description of the short-
range correlations and of momentum space RG ideas to de-
scribe the long wavelength excitations. As a first step we
have used a state selection method to find the best set of
configurations holding their numberNs fixed. The correla-
tion energy as a function ofNs can be separated in two
regimes: The smallNs regime, where the energy changes
rapidly toward the exact value with increasingNs , and the
largeNs regime where the energy changes very slowly with
increasingNs . Given finite computational resources, this re-
quires a different approach if one wishes to obtain a yet
better answer. To tackle this problem we have extended our
state selection technique by using nonlocal operators to gen-
erate states in momentum space which accelerate the conver-
gence and give us a much improved excitation spectrum.
Therefore given any size system and any number of dimen-
sions where one can apply the real space selection technique
~of course restricting oneself to a finite number of states is a
necessity!, our technique can give a more accurate answer
for the low-lying spectrum compared to a real space selec-
tion method alone. For example for the forty site problem we
demonstrated in Fig. 2 that the state selection method be-
comes very slow forNs.4000. We found that for less com-
puter time we can select much fewer states with the real
space state selection method and then switch to momentum
space step and find similar or better results for the energy of
the low lying states.

We have made no special use of the one-dimensionality
of the model problem we have studied. Therefore the pros-
pects for applying the technique to higher dimensions are
expected to be better than in one-dimensional lattice for the
same dimensionality of the Hilbert space of the finite-size
system studied. The reason being that quantum fluctuations
are not as strong in higher dimensions.
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