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Low-lying excitation spectrum of quantum many-body systems
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We present a numerical method for calculating the ground state correlations and low-lying excitations in a
discrete and finite many-body system. The method combines the advantages of real space and momentum
space renormalization group ideas and is similar in many respects to the correlated basis functions perturbation
theory, but is nonperturbative in nature. To illustrate the method, we apply it to the one-dimensional Heisen-
berg antiferromagnetic spihichain.[S0163-182896)09445-3

INTRODUCTION rate description of the long-range correlations. We must first
take care of the short-range correlations in the ground state,
The numerical methods currently in use to tackle thesince these correlations contribute the most to the energy.
guantum many-body problem of condensed matter systenidoreover, we expect that these short-range correlations can
have some drawbacks. Using exact diagonalization techbe described rather accurately by incorporating a relatively
nigues, one expresses the Hamiltonian matrix in a convesmall part of the entire Hilbert space because of their local
niently chosen many-body basis; such calculations can onlgature. To this end, we make use of techniques developed in
be performed for very small-size systems due to the expothe context of quantum chemistfyAn adaptive state selec-
nential growth of the size of the matrix with the system size tion algorithm is used to select a set of many-body basis
Quantum Monte Carlo techniques which overcome this diffunctions that yields as low a variational ground state energy
ficulty by sampling only the important part of the Hilbert as possible, given the constraint on the number of such basis
space are best suited for ground state and finite-temperatuggates that can practically be handled. To obtain a satisfying
properties of bosonic systems. Using such methods it is veryo|ytion to the problem we must also describe the low-lying
difficult to extract information about the ground state or ex-gycitation spectrum and long-range correlations accurately.
cited states of fermion systems because of the “fermion sigR- s we define a set of correlated basis functions obtained

problem.” b . : : .
N . y acting with suitable correlation operators on a few low-
The renormalization groufRG) method was introduced Vi ; - :
; . ing states found in the previous step which generate lon
by Wilson' and was very successfully used to obtain they g P P 9 9

low-lying excitations in the Kondo problem. This technique yvavelength_ low-lying exc_:ltat_lons. We proceed by perform-
overcomes the problem of the exponential growth of the Hiln9 @ variational calc_ulatlon in the subspace spanned _by the
bert space by carefully selecting the states kept at each iter. prrele}ted states. This sFep can a_lso correct the long distance
tion and can be used for either bosonic or fermionic systems?€havior of the correlation functions. Furthermore, we ex-
Shortly after Wilson's solution to the Kondo problem real pect the intermediate correlations to interpolate smoothly t_)e—
space RG methods were applied to quantum lattice m3delstween the short-range and long-range correlations which
While good results were generally obtained for the totalh@ve been described accurately. The present method re-
ground state energy of the system, the ground state wavgembles the correlated basis functions perturbation theory
function was not well described. More recently a density(CBFPT) which has been successfully applied to study
matrix RG algorithm was proposed and performed very weliground state and low-lying excitations in liquid helidnin
in the case of one-dimensionélD) lattice models How-  CBFPT one defines a set of correlated states and expresses
ever, this method uses critical features of the 1D lattice anthe Hamiltonian in this basis. The diagonal part of the
the prospects for applying the technique in higher dimenHamiltonian is used as the unperturbed pigétg and the
sions are not very good. off-diagonal part of the Hamiltonian is treated by perturba-
In the real space RG approach it is very difficult to de-tion theory. CBFPT works because the short-range correla-
scribe correlations existing over a length scale greater thations are taken into account id,. The difference between
the block size. This led some authors to propose RG tranghe exact energy and the ground state energyl pis small
formations in momentum spaée&.In these calculations the and can be accounted for by low-order perturbation theory.
low-lying excitation energies and long-range correlations aréur approach can be viewed as a numerical implementation
well described; however, the short-range correlations and thef the ideas behind CBFPT but is nonperturbative and varia-
correlation energy is not described accurately, as expectedtional. In addition, the CBFPT is a semianalytic method
In this paper we present a method which combines thevhich involves an approximate calculation of the matrix el-
advantages of real space RG ideas to describe the short-rangments of the Hamiltonian whereas in the present method
correlations and of momentum space RG ideas for an accuhey are calculated exactly.
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DESCRIPTION OF SHORT-RANGE CORRELATIONS TABLE |. States and their energy relative lt,.
We wish to i!lustratg the method on alsimplle modgl prob— Energy Number of states
lem, the 24-site Heisenberg spjnchain with periodic
boundary conditions. Our method does not depend in any —6 1
critical way on the dimensionality of the problem, but 1D -5 11
systems are stringent tests, since the quantum fluctuations are -4 305
especially strong in one dimension. The Hamiltonian is -3 3027
-2 13626
N -1 30492
H=02 {S§S1+2(S8'S+SSTh (@ 0 35594

1 21780

whereN=24 andS{,,=S{, a=z,*. 2 6813

Our goal is to describe well both the ground state corre- 3 1009
lations and the low-lying excitations. To achieve this, one 4 61
must describe short-range and long-range correlations 5
equally well. Our method thus consists of two steps. In the
first step, we wish to obtain as good short-range correlations
as is possible given the necessarily limited computer regpries in Table | can be obtained from one another by local
sources. These short-range correlations must be treated f'rt%nsformations, since they differ in energy by 1.

since they contribute most of the energy, and this is best oyt \ve first retain all the states below or at a certain

done-in real space. Therefore, we chose to work with the reaénergy cutoffE, and diagonalize the full HamiltoniaH in

space basis: that restricted subspace. All the diagonalizations in this work
N were carried out with the Davidson algoritfiTo the extent

{Im}i=i={loy,02, ... .on}oizy (2 that the eigenstates of the mean-field Hamiltonian give an

. . . . accurate representation of the local correlations in the true

pr&/yhat IS ngua/altet)nt, .ou:SreiereNnceZHezlm|Itorjid(3|, Wh'ﬁh many-body ground state, and in the absence of any other

Is diagonal in that basis, Mo=2=1SiS{. 4. Itis clearthat ¢ b vion anout the ground state correlations, this is a rea-

) i
the ultimate accuracy of the method depends on a good ) . )
choice of the reference Hamiltonidn,. However, as our sonable selection of the states to keep in order to describe the

results demonstrate, our approach gives good results ev@r?ort—range correlations in the system. .BUt since our chpice
when the mean-field or classical reference Hamiltomigs ~ ©f States ignores the effect of the off-diagonal Hamiltonian
a relatively poor starting point as is the case here. We wouldalrix elements, it is clearly not optimal. However, after the
expect this choice to be much better in higher dimensionsdiagonalization of the full Hamlltonilan in that restricted sub-
where a mean-field can give a qualitatively correct descripSPace, we do have some information about the effect of off-
tion of the ground state. diagonal matrix elements. We use this information to im-
In order to reduce the number of states one has to keeprove on our first guess to find a better set of configurations
track of, it is advisable to make use of the symmetries of thdo describe the short-range correlations in the system. We
Hamiltonian. We have used translation invariance and conmust contend ourselves with an approximate solution to the
servation of totak component of the spin, but have ignored problem of finding the bed\l; configurations out of thél,,
parity, for simplicity. Moreover, we will consider only the configurations in the full Hilbert space, since an exact answer
zero magnetizatioS'=0, equal number of up and down to this combinatorial optimization problem is of course out
sping and the zero total momentum sect&r=0). In what  of the question. We thus make use of the clever basis set
follows, the number of states mentioned is the number ofeduction and state selection techniques developed in quan-
inequivalent basis functions under these two symmetry optum chemistry? It is important to realize that one must
erations in thes?'=0, k=0 sector. Our basis statél)} for  choose théN, spin configurations to describe the short-range
this symmetry sector are thus linear combinations of thecorrelations in an adaptive fashion, since whether or not one
states{|m)} in Eq. (2). should keep a certain configuratida;) depends to some
The states{|n)} are now classified relative to their extent on what other spin configurations are in our{ef
matrix elements (n|Hgy/n)=E,. The Nel state (our internal spade To illustrate this point, consider the fol-
ANVYTLITL - TDHILTLT, . LT} is the lowest energy  lowing situation: suppose we have picked two configura-
state, withEyg=—6J [each antiferromagnetic bond con- tions |a;) and|a,) from our configuration sefja)} and sup-
tributes —(J/4) and there are 24 of themFrom now on we pose we have to throw away one of them, so we must decide
shall use units wheré=1. The excited states are obtained by whether we want to keefiy;) or |a,). If the difference in
flipping an even(to conserveSy") number of spins. The energy of these two states is very large, for example fiage
states just above the ‘Restate have two nearest neighbor to the Neel state anda,) the state withS°'=0 and with the
spins flipped, namely two ferromagnetic bonds costing eachkargest number of ferromagnetic bonds, then one should
an energy of. Their total energy is thus-5. The next high- clearly keep the lowest energy state, independently of what
est states have four ferromagnetic bonds, and so on. Thether states are present in the §a}}. But now suppose that
number of states and their energy relativéHigare given in  |a,) has somewhat higher energy thar). The contribution
Table I. It is important to realize that the states in adjacenbf any given configuration from outside the set to a given
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state which is a linear combination of the states in the set is 50 . . ;
not to be judged by simply looking at how far its energy lies 450 _o000900080TTITTTTTIUTOOCTOCD
from the energy of the state. As it will become clear in the 5

~
o

=]

following parts of the paper, what matters is the ratio of the
Hamiltonian matrix element between the configuration and
the state to their energy difference. That implies that if the
coupling of|a,) to the whole sef|a)} is larger to that ofa,)

to the whole set, then it might be preferable to keep the
configuration|a,), despite its higher energy.

Let {|a)} denote the set dflg configurations retainetn-
ternal spac®, |¢/%) the variational ground state in tHgr)}
subspace of energi®, and {|B)} the set of states not re-
tained(external spac®. We have implemented in this work
the following adaptive state selection algorithm. We first es-

timate the correctiofd o? from the external space to the ap-  FiG. 1. The amount of correlation energy recovered as a func-
proximate eigenstates ™) by first order perturbation theory, ton of the number of states kept in the internal spégeeles for
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using as unperturbed Hamiltonian the 24-site antiferromagnetic Heisenberg spiohain in the S
— ON =(0) 1(0) =0 and zero total momentum sector. The straight line is the exact
Ho= ") EO (¢ (33 result. The Hilbert space contains 112 720 states.

and

~ ~ the difference in the variational ground state energy between
Hi=H-Hoq (38b)  the two possible internal spaces was in the fifth or sixth
as the perturbation. One thus has decimal place. One simply has to be careful to choose the
appropriate termination criterion for the iterative procedure.

We always save the previous internal spdee} and the

[ =2 cyla), (48 coefficients of the variational wave functiga,} to disk. We
“ stop iterating if the new internal subspace is identical to the
old one or if the variational energy goes up from the previous
|sy)y=> cslB), (4b)  iteration. In that case, we must discard the current wave

B function and retrieve the previous one from disk.

where the coefficient§c,} were obtained by diagonalizing _ There is a vast number of variations of that simple algo-
the Hamiltonian in the internal space and we wish to estif/ithm that can be used. For instance, one need not truncate

mate the coefficientéc}. To first order inH,, one has back to the same numbe{ of states. One can use this
procedure to increase the size of the internal spacaby
1 configurations, truncating thls+ ng states in the state selec-
Cs=Em > c(alH|B). (5 tion procedure. We have tried a few variants. Our experience
“ is that internal spaces with lower variational energies are
Let M be the number of spin configurations in the externalobtained if at every step of the adaptive state selection pro-
space which have nonzero matrix elements with any of theedure the internal space changes little, i.e., if the search
configurations|a) in the internal space. The perturbative proceeds in small steps. Practically of course, some compro-
wave function¢/*)=|49)+|5y) is then a linear combination mise must be made, since it obviously takes more computer
of Ng+ M, states. We can now select a new internal spacéime to find a near optimal solution if the search proceeds in
{|a")} by choosing the\ configurations inyY) which have  very small steps.
the largest(in magnitude coefficients. To take full advan- Before we describe, and in order to motivate the second
tage of the variational freedom on the coefficiefdg}, the  step of our method, it is interesting to calculate how much of
wave function is relaxed, by diagonalizing the Hamiltonianthe correlation energy, i.e., the difference between the exact
in the new, improved internal space. The procedure can bground state energy and the energy of thelNgate, one can
repeated a number of times, until no further improvement irrecover as a function of the number of states kept with the
the ground state energy results. This algorithm does not akdaptive procedure we have just described.
ways converge to a unique internal spdg®}, since our The results are shown in Fig. 1, and were obtained as
state selection procedure is based on an approximate calciollows. For a number of states kept larger than 3344, we
lation of the effect of the external space. We have observedirst kept all the states up to an energy 3 above thel Niate
in some cases, that the procedure oscillates between two setsd used the adaptive algorithm to find a better set of 3344
of configurations. If one chooses one of the two sets, ouconfigurations. Then the number of configurations was in-
state selection procedure picks as the new internal space tloeeased by 500, and the set of configurations was optimized
other set. After the wave function is relaxed, the state seleowith the adaptive algorithm until the ground state energy
tion procedure gets us back to the original set. We have natould not be lowered anymore keeping the number of states
found cases where the algorithm goes from&eto setS,,  fixed at 3844. The number of configurations was then in-
to setS; and then back to sef; or more complicated limit creased by 500, and so on. For a number of states kept less
cycles. This is not a serious practical problem, howeverthan 3344, we started with our best internal space with 3344
since in all the cases where these oscillations have occurredpnfigurations, discarded the 500 states with the smallest
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the 24-site chain with the adaptive state selection in real
] space we have described, that number is only about 80% for

505000660060000000000000] the 40-site chain and about 65% for the 60-site system. This
°o°°°°°°°°°°° ] underscores the incapacity of the real space procedure to
yield all of the low-lying states of the system. This indicates
that we must change the strategy of state selection to accel-
erate the convergence rate. This is going to be our next step
which is explained in the next section.

Before we introduce the improvement on our method, let
us discuss some of the reason for the shortcomings of the
] real space method. The number of spin configurations with a
o Prr oo oo given excitation energy, say 3 above theeNstate, increases

Number Of States In Interal Space exponentially with the size of the system. For instance in
. Table I, we see that there are 3344 configurations with an

__FIG. 2. The amount of correlation energy recovered as a funCy e gy 3 apove the bstate for a 24-site chain. That num-
tion of the number of states kept in the internal spéircles for . . . . o
the 40-site antiferromagnetic Heisenberg spiohain in the S ber is 55233 for a 40-site chain. Since it is better to keep
=0 and zero total momentum sector. The straight line is the exactiates at an energy, say 3 above th&ilNﬂate th_an_ to keep
result. The Hilbert space contains approximately>al@® states. states at an energy, say 9 above theelNstate(it is only
when the states are relatively close in the energy that the
weight in the wave function. We used the state selectiorfhoice is not obvious and because of the exponential in-
method to improve on this initial internal space until the crease in the number of states with energy and system size,
ground state energy could not be lowered anymore keepin@]e state selection procedure eventually gets stuck at some
the number of states fixed at 2844. The 500 configurationghaximum excitation energy for these larger systems, which
with the smallest weight in the wave function were discardedcorresponds to some maximum number of nearest-neighbor
and so on until the number of configurations in the internalspin flips. Thus only correlations up to some length scale,
space was reduced to 344. significantly smaller than the system size for these larger,

One can see from the figure that the initial rate of recov-40-site and 60-site systems can be taken into account in the
ery of correlation energy as a function of the number ofreal space, adaptive state selection procedure, and the miss-
states kept is very fast. However, it is also clear from theing correlation energy comes from the spin correlations on
figure that past 4000—5000 states kept, the recovery rate bgyger length scales. We thus expect, as the results displayed
comes exceedingly slow. One can see this even better forig Figs. 1-3 demonstrate, that the number of missing low-
larger spin chain. Figures 2 and 3 display our results for gying states increases as the size of the system increases. One
40-site and 60-site Heisenberg chain, which were obtained if},, 14 also expect that the gap from the approximate ground

a similar fashion as the results for the 24-site chain shown i%tate that results from the real space step of our method to
Fig. 1, except that we initially started with all the states up Ohese other low-lying states gets smaller as the system size

an energy 2 above the ‘Mestate. It is striking that the increases
amount of correlation energy missing at the point where the The lowest energy states obtained by diagonalizing the

rate of recovery of correlation energy becomes exceed'r1gl¥lamiltonian in the internal space generated by the adaptive

slow gets larger as the system size increases. Whereas O8ate selection procedure are completely decoupled. Since it

can easily recover about 95% of the correlation energy fo(/vould require adding an exponentially larger number of
higher energy spin configurations to significantly improve on
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120 : . - this initial step, the best strategy given finite computational
10 f ] resources is to generate new low-energy states that couple to
100 ] the correlated wave functions we have obtained and are lin-

9.0

early independent of them. If one has some knowledge about
the collective modes, or long wavelength modes in the sys-
tem, one can explicitly construct such low-lying states from
the correlated states obtained by diagonalizing the Hamil-
tonian in the internal space.

One further comment about the excitation spectrum is in
order. Whereas our results for the ground state enEggre
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ok variational, those for the excitation spectrum, i.e., the differ-
00 , . . ences E;—E, for the excited states of energ¥;,
¢ S99 mber Of States  intemal Space. 20000 i=1,2,3..., arenot. We found that for a given computa-

tional effort (number of states retaingdone gets better re-
FIG. 3. The amount of correlation energy recovered as a funcSults for the correlation energy than for the first excited state,
tion of the number of states kept in the internal spaiecles for  although not by a lot in this rather small size system. It is due
the 60-site antiferromagnetic Heisenberg spiohain in theS™  to the fact that for the 24-site chain we do not have really
=0 and zero total momentum sector. The straight line is the exadong wavelength fluctuations. The energy difference of about
result. The Hilbert space contains approximatek/1D'® states. 0.7 between the first excited state and the ground state, indi-
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TABLE Il. Comparison of configuration sets. @ ®
-8.0
Number of states Number of states e
Energy without state selection with state selection -85 ¢ _—
-6 1 1
-8.0
-5 11 11
-4 305 275 B
-3 3027 1500 § 7
-2 0 1386
-1 0 171 eor
—105
cates that the excitation is rather local. This is clearly seen in

the expectation value dfl~'3;S-S.,, I=1,... N in the -110
two states. In a larger system, the long wavelength part of the
excitation spectrum obtained with this real space method FIG. 4.(a Energy of the state§i®;)}{_ up to —8. The inter-
alone would be even a poorer approximation to the correc‘i‘a_l space was generated without the adaptive state Iselectlon. All
low-lying spectrum. spin configurations below or at an energy 3 above thel rftjalte
Among the large number of variations in the adaptive’$'® kept. (b) Energy of the states {0:(a)| @)} =0,
state selection algorithm, the internal space for the 24-siteQs(d)|Pi)} o for all wave vectors up to an energy of-8. The
chain used as a starting point for the momentum space steVﬁJVO Icglwestf_states a_rre;]almost dEQene:jate agd are dlfflqc)ult to szparate
of our method was obtained as follows: we first kept all the'o ( t:ell '/(‘il;r)?q) >Wﬁzre|§)°;risﬁ]znlowégt Sct;?e_i;;))l '|'0r>1e tf]lir; d
states up to an energy 3 above theeNgtate, a total of 3344 ¢4~ 0 0 '

lowest state i9.(q="57/6)|®y). The other state®.(q= )| ®;),

states, and used the adaptive procedure described aboveitgz,& etc. are higher in energy as are the staBega)|®,),

select a better set of 3344 states. We have not tried, in this_3.4 o6
particular case, to start with a smaller set of configurations

and increase the number of states kept progressively. In N-1 N
Table Il, we compare the configuration sets obtained by o — cogal + o 6
keeping all states up to an energy 3 above thelState and () Zo 19 )m§=:1 St mSm 3

the internal space that results when the state selection tech-

nique is applied. The difference is quite striking, about half N-1 N

of the states at an energy 3 above theNsate are discarded Oy(@)= 2> sin@l) X S\ Sy, (6b)

in favor of higher excited states, and the percentage of the 1=0 m=1

correlation energy recovered goes from 89.7% to 95.5%where q=2i/N, i=0,... N/2. Then, one carries out a

Since we cannot f|nd a." the eigenveCtOI’S in the internal‘/ariational Calcu|ati0n in the Space Spanned by

space, we only keep thecorrelated states of lowest energy,

with n much smaller than 3344, the dimension of the internal  {|d)1"-2,  {O.(q)|@)}"=L,  {O4(q)|Di)}I=E

space. In this work, we have used-20 correlated states.

for all 0<q<, and with, obviously, only{O.(q)|®;)} "¢

wheng=0 or 7. Since one hadl/2+1=13 wave vectors,

the size of the generalized eigenvalue problem that must be
The next step in the method is designed to correct theolved(the states are not orthogonal to one anotfeef2 (N/

long wavelength behavior of the wavefunction by carefully2+1)—2+1]n=25n.

selecting the excited states that are retained in the calcula- The low-energy spectrum of the state$d;)}'-d,

tion. The energy of a given state is simply the number of{ O4(q)|®;)} '=¢, {0(q)|®;)} =4 is shown in Figs. 4 and 5.

lattice sitesN times the expectation values &-S ., for  In Fig. 4, the results were obtained without the adaptive state

any i. It only involves nearest neighbor spin correlations.selection procedure, namely the internal space was generated

Two eigenstates that differ very little in energy will exhibit using an energy cutoff only. Figure 5 shows the correspond-

very similar short-range spin correlations and thus will onlying results using the improved internal space, generated with

be significantly different(they have to be orthogonafor  the adaptive algorithm. Figurega}l and a) show the low-

long range correlations. Since the Hamiltonian is locallying spectrum of the states obtained with the real space

namely only couples directly nearest-neighbor spins, the comethod{|®;)} "=} while Figs. 4b) and 5b) show the low-

relation (or equivalently, interactionof spins that are far lying spectrum of the states{O.(q)|®)}!'~y and

apart involves high orders of perturbation theory and thus th¢O4(q)|®;)} "-¢. The two figures are remarkably similar

highly excited states contribute more significantly to the low-[the lowest two states in Fig.(d) are almost degenerate

lying excitation spectrum than to the local properties. Let uswhereas there is a larger gap in Figb, and show explic-

denote{|®;)} n-} the lowestn correlated states obtained by itly the failure of the real-space approach to generate all of

diagonalizing the Hamiltonian in the internal subspace usinghe low-lying states in the system. In particular, the three

the adaptive state selection method detailed earlier. We gesstates that have an energy between thatbgf and|®,), the

erate new states by using the following two-magnon correlatwo lowest states produced by the real-space proce-

tion operators: dure, are in order of lowest energyQ.(q=m)|®y),

DESCRIPTION OF LONG-RANGE CORRELATIONS
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@ ®) approach to the Kondo problehThe operators used by Wil-
son however have properties that do not generalize to the
present situation. Their Hermitian conjugates annihilate the
| correlated states and their commutation relations were
simple. This allowed Wilson to carry out an unlimited num-
eor T = ——— ber of iterations while only keeping track of the matrix rep-
resentations of relatively few operators.

We could imagine diagonalizing the Hamiltonian
in the space spanned by|®)}"=d, {O.(q)|®)}M=g,

Energy
|
©
o

00| {04(q)|®;)}"-4 and then truncating to the loweststates,
_— say {|®/)}"_¢ and generating new states by applying the
o5 ————— correlations operators to the/)'s and so on, by analogy
; with Wilson’s approach to the Kondo problénHowever, in
o _J order to carry out these renormalization steps, we need ma-

trix elements of increasingly long strings of operatorgq),

FIG. 5. (a) Energy of the state§®,)}""& up to —8. The inter- Os(q_) between qud(l)i>’s. Slnc;e the comp'utatlon of these
nal space was generated with the adaptive state selection, as dB@trix elements is the most time consuming step of the al-
scribed in the text(b) Energy of the stategO.(q)|®;)}"=4,  gorithm and the complexity of the computation increases
{04(q)|®;)} "=2 for all wave vectors up to an energy of-8. The ~ rapidly with the length of the operator strings, there is a
two lowest states are better separated than in Rig. @nd corre-  Practical limit to the number of renormalization group itera-
spond to0(q= ) |de) andO(q= 117/12)|d,), where|dy) is the  tions that can be carried out. However, this is not such a high
lowest state in@). The third lowest state i©.(q=5/6)| D). price to pay, since we are starting from highly correlated

states, and only a very few iterations are needed to obtain
O.(q=117/12)|dy), and O,(q=57/6)|Py). These low- excellent results. We have only carried out one iteration, and

energy states couple to bo{tb,) and |®;) and thus do this is already enough for the 24-site Heisenberg chain. It
change the excitation spectrum significantly. Moreovermay be possible, using all symmetries and clever tricks, to
since they are at an energy below the first excited state prd:ary out two such iterations for realistic problems, since the
duced by the real-space procedure, the excitation spectruffin€ consuming part of the method, generating the states
obtained in the first step of the method is thus totally unre=mSi+mSm|®:), 1=0,... N=1, i=0,...n—1, can be
liable. It is only when the states neglected in the calculatiorlone completely in parallel, and thus can be implemented
have an energy high relative to the low-lying states we ar&/e€ry effectively on massively parallel supercomputers. This
interested in that they do not alter qualitatively the low-lyingiS another attractive feature of the method. Instead of the
spectrum, since their effect is to shift all the low-lying statesWilson RG procedure described above, we could also gener-
by essentially the same amount. Because there are mofd€ @ correlated basis

wave vectorg] in a larger system and they are more closely no1 he1

spaced, we would expect there would be even more states {1®)} =9, {Oc(@)| P} g,

O.(q)|®;)} =g and{O4(q)|P;)} "=y very close to the low- n—1 , n—1
éstcstaleg0> :gnd th{usswe |wozj}ld gxpect the correlation en- {O(@)[®)}=0.  {0:(@)Oc(a)[Pi)}io-
ergy recovered in the second step of the method to increase {Os(Q)Oc(CI')|‘Di>}FQOl,
as the size of the system gets larger. Note also that since
there are more of these low-lying states in higher dimenetc. and use the adaptive state selection algorithm detailed
sions, and since the adaptive state selection procedure wouddrlier to retain a near optimal subset of such states. But once
produce a better starting point in two or three dimensions, weagain, the computational complexity of calculating the states
expect this method to be better suited to the study of corregenerated by applying long strings of correlation operators
lated many-body systems in two or three dimensions. limits what can be done in practice.

Some comments are now in order. Whereas the states in The results of the variational calculation in the space
adjacent entries in Table | can be obtained from each othespanned by the states|®)}'=3, {O.(q)|®)} =g,
by applying local operators, as was mentioned previously{O4(q)|®;)} "_¢ are shown in Figs. no adaptive state se-
the correlation operators in Eq€a) and(6b) are nonlocal in  lection) and 7(with adaptive state selectipnwhere they are
space, in that they involve spins at any separatiorcompared to the exact results and to the results obtained with
1=0,... N—1. Suppose that the statf$;)} -5 obtained the real space step only. The two figures are again remark-
by the adaptive state selection procedure contain states witibly similar. The state selection procedure affords a better
energies up tE ., above the Nel state. By applying the description of ground state correlations, and may undoubt-
correlation operators to thigh,) one generates states with edly yield larger benefits for a system whose Hilbert space is
energies up tdE,,,,+2 above the Nel state. To generate considerably larger than the one we have been studying. The
these types of configurations with the local, real space adagxcitation spectrum up to an energy 1 above the ground state
tive procedure would require much more computational reis well described in both cases where the momentum space
sources. step is used, and not as well without it. As noted earlier, in a

The procedure of generating new states by applying oplarger system with genuinely long wavelength excitations,
erators to approximate eigenstates obtained in a previoute improvement brought about by the momentum space step
step or iteration is similar to Wilson's renormalization group should be much more significant. At higher energy, the situ-
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@) E©) = ~10.6700 (6) E(0) = ~10.5671 (€) E(0) = 10,1804 on how high in energy the states obtained by applying two
2’°[ - correlation operators lie. Only states below the energy of the
[ - e lowest of these states can be correctly described. At higher
B = - energy, the results are unreliable.
wwp T - We have been able to include all momenqtarhis comes
12t EE— from the fact that the time consuming part of the calculation

is the evaluation of the matrix elements such as
S (@il S 4 S Sy Sl @) for all | and’. Carrying

out the Fourier transform for ong or all of them is an
insignificant overhead. In this case we could have used in-
stead the correlation operators

E(n)-E{0}

0.8 -

0.6 -

04 r

02+

00

02 N
o= 2> SLuSy (7)
FIG. 6. (a) The exact result for the energy spectrum of the m=1
24-site antiferromagnetic Heisenberg séinhain in theS®'=0 and
zero total momentum sector. Also shown is the ground state energ .
or 1=0,... N—1, namely the real space version of the

E(0). (b) The spectrum obtained with the present method, withou
using the adaptive state selection procedure. The internal space copPeratorsO.(q) and Og(q) of Egs. (6a) and (6b), and ob-
sists of the 3344 states with the lowest enerfgy0) is the varia- tained the same answer. For larger systems, however, with
tional ground state energyc) The spectrum obtained without the many more wave vectors, it may not be possible to solve the
momentum space stef(0) is the variational ground state energy generalized eigenvalue problem with dense overlap and
obtained by diagonalizing the Hamiltonian in the space of the 3344Hamiltonian matrices that results when keeping all wave
states of lowest energy. vectors. In that case it is better to do the calculation in mo-
mentum space with the operatddg(q) andO4(q) of Egs.
ation degrades, but this is to be expected, since we have onfga) and(6b) and keep as many low-energy states as practi-
carried out one RG iteration in momentum space. The stategal. Or better yet, one could select the appropriate states with
at energies above 1 would mix strongly with the states oban adaptive algorithm as we have use in the real space part of
tained by applying two correlation operators to theour method, but we have not implemented this idea in the
{|®;) =&+ which would be in the same energy range. Thispresent work.
brings us to a limitation of the method, namely the energy up It turns out that the states generated in the way described
to which the excitation spectrum is well described dependsibove are linearly dependent when keeping all wave vectors
g. This is because the operato(l =0) of Eq.(7) acting on
a statd®d;) gives the number of up spins times the same state
|®;) since all the configurations in the stdtg;) have the

(a) E(0) = ~10.6700 {b) E(0) = ~10.6420 (¢) E(0) = -10.4588

ey ———— — —_— sameS?'. This has the unfortunate effect of making the
1o —— R Cholesky decomposition of the overlap matrix in the solution
ap —— of the generalized eigenvalue problem singular. This prob-

lem may also occur in larger systems, even when not all
wave vectors are kept, but many correlated states are in-
cluded. In this case some states may be nearly linearly de-

E(n)-E(0)

08T - E— pendent and the Cholesky decomposition may become un-
061 stable. In any event, when solving a generalized eigenvalue
o4l problem, it is a good idea to carry out a singular value de-

composition of the overlap matrix to check for linear depen-
dencies among the basis vectors. The overlap m&rig
decomposed aS=UWV', with U, V orthogonal matrices
andW a diagonal matrix containing the singular values. We
keep only as many singular values as is possible for a nu-
24-site antiferromagnetic Heisenberg sginhain in theS®'=0 and tmhgn(fsgnigagu‘et; eo Irﬁ;ﬁﬂkﬁocgﬁfesg)%ig\iﬁ glguteo %zb:ﬁg;’t ?ns]l_ng

zero total momentum sector. Also shown is the ground state ener%’ortant sinqular values as the new basis in which we carr
E(0). (b) The spectrum obtained with the present method using th 9 y

adaptive state selection procedure. The internal space consists of tht t_he diagonalization. 16; denotes ﬂ.lgth column_ of t_he
3344 states with the largest coefficients in the trial ground staté]’]"’ltr!xf!aJ , then the.new overlap mgtrlg and~Ham'|Tton'an
wave function chosen with the algorithm described in the te¢@) ~ MatrixH have matrix elementS;; =u; Su; andH;; =uiHu;,

is the variational ground state enerdy) The spectrum obtained espectively, where; andu; are such that the singular val-
without the momentum space stdp(0) is the variational ground UesW; andW; are larger than some threshotd We have
state energy obtained by diagonalizing the Hamiltonian in the opti€Xplicitly checked that the energy spectrum obtained by re-
mized internal space of 3344 states selected by the adaptive alggioving the small singular values when all wave vectors are
rithm. kept agrees with the spectrum obtained with the same

02

0.0

FIG. 7. (a) The exact result for the energy spectrum of the
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method but discarding at the outset the states wjith0, space RG ideas for the accurate description of the short-
which we know to be linearly dependent with the otherrange correlations and of momentum space RG ideas to de-
states. scribe the long wavelength excitations. As a first step we

The accuracy of the results will of course depend on @éave used a state selection method to find the best set of
judicious choice of the correlation operators. They must ob€onfigurations holding their numbéi, fixed. The correla-
viously not change the quantum numbers of the stateon energy as a function o can be separated in two
{|P)} n-1 They ought to be nonlocal in space to effectively regimes: The smalN, regime, where the energy changes
correct the long-range behavior of the wave functions andapidly toward the exact value with increasihy, and the
must be chosen with some knowledge about the nature of tharge N regime where the energy changes very slowly with
low-lying excitation spectrum. The long-range behavior ofincreasingNg. Given finite computational resources, this re-
the ground state wave function determines the long wavequires a different approach if one wishes to obtain a yet
length dispersion relation of the collective modes in the sysbetter answer. To tackle this problem we have extended our
tem. Our choice of the correlation operators was motivatedtate selection technique by using nonlocal operators to gen-
by the fact that the low-energy excitations are long wave-erate states in momentum space which accelerate the conver-
length magnons which can be obtained by applying a spigence and give us a much improved excitation spectrum.
deviation operator in momentum space on thelNsate and  Therefore given any size system and any number of dimen-
that one needs two such magnons to preserve the magnetizens where one can apply the real space selection technique
tion and total momentum of the states. Including operatorgof course restricting oneself to a finite number of states is a
that create higher excitations, namely operators with mor@ecessity, our technique can give a more accurate answer
than onesi*Sj‘ pair, would of course improve our results, for the low-lying spectrum compared to a real space selec-
especially the excitation spectrum at energies 1 above théon method alone. For example for the forty site problem we
ground state and higher as noted previously, but the comdemonstrated in Fig. 2 that the state selection method be-
plexity of the calculation of the matrix elements increasescomes very slow foN;>4000. We found that for less com-
rapidly with the number oSi*Sj’ pairs, and this imposes puter time we can select much fewer states with the real
practical limits on what can be done. This is not surprising,space state selection method and then switch to momentum
since including such operators is akin to carrying out morespace step and find similar or better results for the energy of
renormalization group iterations. the low lying states.

In “He, the linear in momentum part of the dispersion We have made no special use of the one-dimensionality
relation of the phonon spectrum is due to the long rangef the model problem we have studied. Therefore the pros-
behavior of the two-body correlation function, or equiva- pects for applying the technique to higher dimensions are
lently the asymptotic behavior of the Jastrow correlation fac-expected to be better than in one-dimensional lattice for the
tor f(r) asr—oo. However, the slope of the phonon spec-same dimensionality of the Hilbert space of the finite-size
trum, the sound velocity, does depend on the short-rangsystem studied. The reason being that quantum fluctuations
correlations, and therefore a quantitative description of theare not as strong in higher dimensions.
excitation spectrum requires a good description of the short-
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