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We introduce a model where a Chern-Simons term is coupled to the three-dimensjonmaddel. This term
endows vortices with an internal angular momentum and thus they acquire arbitrary statistical character. In our
interpretation of the Chern-Simons term in the three-dimensiotyaimodel, it takes an integer value that can
be written as a sum over all vortex lines of the product of the vortex charge and the winding number of the
internal phase angle along that vortex line. We have used the Monte Carlo method to study the three-
dimensionalx-y model with the Chern-Simons term. Our findings suggest that this model belongsxeythe
universality class with the critical temperature growing with increasing internal angular momentum.

I. INTRODUCTION question as to whether and to what extent the statistics of the

. . uasiparticles change the critical properties of a physical sys-
A phenomenological theory, similar to the Landau—,?em is?still controvegr]sial. prop Phy y

Ginzburg theory, which describes aspects of the integer and Thjs problem can be studied further by numerical inves-
fractional quantum Hall effect is the Chern-Simons-Landautigation of the critical properties of a relatively simple model
Ginzburg(CSLG) theory"* In such a description, the elec- coupled to the Chern-Simons term. In this paper we couple
trons are minimally coupled to a statistics changing “electro-the three-dimensionak-y model [or O(2) model to the
magnetic” field whose action is the topological Chern- Chern-Simons term following the approach of Wilczek and
Simons term. The CSLG theory has been used by severde€® who studied the nonlinear sigmgO(3) invariant
authors to study the transitions from a quantum Hall liquid tomodel coupled to a Hopf term. We investigate how this

the quantum Hall insulatdf and the transitions between dif- toPological Chemn-Simons term influences the critical prop-

ferent quantum Hall liquids, i.e., between different quantumg:geéif?;g‘rﬁ ?rgvr; rtr;%dilrigggl Wfosggéswgﬁ?g orrnggélthey
Hall plateaus. Jain, Kivelson, and Trivedi advanced the ide If brop y

that the transitions between different quantum Hall states be- Wé wish to emphasize here that there are two ways of

long to the same universality clagsithin a certain famil),”  introducing the Chern-Simons term in the theory; first, it can
i.e., the critical exponents characterizing these transitions ange introduced by minimally coupling a fluctuating(1)
independent of the filling factor and thus of the statistics ofgauge field to the complex matter fiejdwhere the action of
the quasiparticles. This argument can also be made usinge gauge field is just the Chern-Simons téft In this
duality considerations. case the field quanta acquire different statistics in the long-
On the other hand, there have been studies of relativistigravelength limit. Second, one can define é)Jgauge field
versions(where disorder is completely absgof the Chern-  through a conserved current and add the Chern-Simons term
Simons-Landau-Ginzburg theory which attempt to determindor this gauge field to the Lagrangidh®>*®Then extended
the dependence of the critical properties on the coefficient iparticles such as skyrmions in thé3dmodet® and vortices
front of the Chern-Simons terfit? The authors of Refs. 9 in the x-y model acquire different statistics.
and 10 study the @) model and use a W/ expansion, Thex-y model without the Chern-Simons term in two and
whereN is the number of components of the order param-three dimensions has been studied extensitaly e.g., Ref.
eter, to compute the critical exponents. They find that thel?7). It was found that vortex excitations play a crucial role in
critical exponents depend on the coefficient in front of thethe phase transition. Kosterlitz and Thouless showed that the
Chern-Simons term. The authors of Ref. 11 consider theairing of vortices in thex-y model causes a phase transition
Dirac theory in three dimensions and perform a perturbativén two dimensiong® In three dimensions the vortex strings
expansion in the Chern-Simons coefficient to find the criticalseem responsible for the occurrence of the phase transition,
exponents of the theory to vary with this coefficient. In Ref.which has the character of an order-disorder phase transition.
12 an expansion up to one loop of the scadsft theory  The remarkable property of they model is that the topo-
coupled to the Chern-Simons term is used to study the crititogical objects, vortices in two and vortex lines in three di-
cal properties of this theory. It was found that the fluctuationsmensions, which are responsible for the occurrence of the
in the gauge field reduce the order of the transition fromphase transition, do not explicitly appear in the model. They
second order in the absence of the gauge field to first order iare rather created dynamically and extended over long length
the presence of these fluctuations. We remark that the scalacales. Thus we can consider thg model as a microscopic
¢* theory without the gauge field and close to the criticalfield theory that contains quasiparticles that are extended ob-
point is equivalent to the Q) or x-y model. Therefore the jects over long length scales and interact through a potential
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created by the interaction of the microscopic degrees of free- Before we turn to the construction of the Chern-Simons
dom. In the two-dimensionat-y model the quasiparticles term for thex-y model let us briefly discuss the case of the
are the vortices that interact through a logarithmic potentialO(3) model. This model is different from they model only
while the microscopic degrees of freedom are elementarin that the spin space is a unit sphere in three dimensions.
and are coupled by a nearest-neighbor poteitfalthe next The equation of motion of the @) model admits soliton
section. The three-dimensionak-y model can then be solutions also known as skyrmions. Wilczek and Pee
viewed as describing two-dimensional vortices moving inshowed that the skyrmions can be given arbitrary statistics if
Euclidean time. By coupling the three-dimensionaly  the Langrangian of the @B) model is coupled to the Chern-
model to the Chern-Simons term we can give the vortices agimons term. Some of the arguments of Wilczek and Zee can
internal angular momentum taking values between 0 andbe applied to the case of they model in a straightforward
1/2. Since the internal angular momentum of the particles isnanner. Furthermore we will make use of the “form” lan-
closely related to statistics, quasiparticles whose statisticajuage(see, for example, Ref. 2®ecause this formalism is
character can be interpolated between that of a boson andvary convenient for our purposes.
fermion, are dynamically created. The Chern-Simons terid -5 for an Abelian gauge field&

In order to introduce the Chern-Simons term in the threeis defined as follows:
dimensionalx-y model we need to identify a current. The
natural choice in this case is the vortex current that, since it
is represented by the vortex lines, can be easily identified.
Since the vortex current is conserved we can write it as the

curl of a vector potentiaﬁ, which enters into the definition where
of the Chern-Simons term. It turns out that each single vortex
line gives a contribution to the Chern-Simons term which is
the product of the vortex charge and the winding number of . Y
the internal phase anglef. the next sectionalong that vor- dA=3,A,dx"/\dx*. )

tex line. This interpretation of the Chern-Simons term en-The constank in (3) will be specified later. The symbols in
ables us to compute this term for an arbitrary lattice fieIquS_(g)_(5) and in the following are defined as in Ref. 20.
configuration. We then couple the Chern-Simons term to the | et us consider a spin configuration wighvortex lines on
x-y model and compute the helicity modulus and the specifig | 3 |attice with periodic boundary conditions. Each vortex
heat for this new model. The finite-size analysis of thesgjne represents a vortex of an integer vortex change |
quantities leads us to the conclusion thatxhg model with  pye to the periodic boundary conditions all vortex lines are
the Chern-Slmon_s term exhibits the same critical propertieg|gsed. If we travel along a vortex line the spins forming the
as thex-y model itself. , vortex may rotate in the internal spin space. This vortex line
The details concerning these introductory remarks are des topologically different from a vortex line, representing the
scribed in the following sections. In the next section we iNn-game vortex charge but with a different number of spin rota-
troduce the three-dimensionaly model and derive the ex- tions. We expect the Chern-Simons numis@r to contain
pression for the Chern-Simons term for this model. Theyis information.
partition function for thex-y model with the Chern-Simons Given a conserved curreita gauge fieldA can be con-
term is also given. In Sec. lll we describe the physical ob-gtycted by?
servables such as the helicity modulus and the specific heat

H cs™ kf A/\dA, (3)

A=A, dx*, 4

and discuss the numerical method, which we employed to dA=xj. (6)
compute these quantities. Our results are given in Sec. IV. In
the last section we briefly summarize our findings. In our casej is the current 1-form whose support is the

vortex lines. We write
Il. THE CHERN-SIMONS TERM IN THE x-y MODEL

In this section we define the-y model and give a geo- i=> iq. (7)
metrical interpretation of the Chern-Simons term for this d
model. - _ . wherej, denotes thejth individual vortex current. The vor-
The partition function of thex-y model on the lattice is oy chargen, is obtained from
defined as q
z- [ I aoex—pn), M w072 ®
I
where 8=J/kgT and dCq is an arl_)itrary cqntour enclosing the core of thth
vortex line, 8 is the spin angle. Note also that
T==2, S5 )
(0.) f xj=2mng, 9)
The sum in (2) runs over nearest neighbors, q

§i=(cosﬁi ,Sing) is a two-component vector, which is con- whereC, is the surface bounded by the cus€,. We want
strained to be on the unit circle addsets the energy scale. the gauge fieldA to satisfy the following condition:
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From here we can immediately see this changes its sign
LC A=2mng, (10 under parity or time-inversal transformations. Let us con-
g sider thez axis as the Euclidean time axis. Then we can think
or equivalently by the Gauss-Bonnet theorem of our model as describing vortices moving in time. A closed

loop corresponds to the creation of a vortex and antivortex
that move apart and are annihilated after some time. Time-
inversion inverses the path in the integ(b), i.e., changes
the sign ofm,, but leaves the vortex chargg unchanged,
Let us try the ansatz whereas a parity transformation inverses the path in the in-
tegral (10), i.e., changes the sign of;, but leaves the spin

A=do+ E wq, (12) rotationsm, unchanged.
q In order to determine the Chern-Simons numidgg for a

where the support of the 1-forms, is also restricted to the ~configuration of spings;} on the lattice we need to measure
vortex lines. Using the spin rotationsn, along the vortex lines. The vortex lines

are perpendicular to the plaquettes and can be found by mak-
dwg=x*]q (13)  ing use of the conservation of the vortex current, if a cube
has an ingoing vortex current, it has an outgoing vortex cur-
rent as well. The spin rotationms, can be measured as fol-
lows. After introducing a comoving 3-bein that moves along
the vortex line and fixing the position of an arbitrary spin
do+ > wq>/\2 dag (14  with respect to the 3-bein, we determine how often a spin at
q q’

Equation(3) takes the following form now:
Hes= kf

our fixed position rotates when we travel along the vortex
line.

_ In the presence of the Chern-Simons tefgns we define
k% f daAdwﬁk% J og/\dwg. (15 the partition function of the-y model as follows:

f dA=2mn,. (11)
Cq

we are able to satisfyl0) and(11).

Let us spread out the vortex lines, i.e., we define the support

of the formsw, to be a thin tube of radiue—0 around the z:f 11 dé,exp(— B.7#+iaN o). (22)
vortex lines. Introducing a comoving 3-bein as a local coor- ]

dinate system to express, locally, we realize thatvy has . . i _ ] ]
components only in a disk perpendicular to its vortex line, orSince we expect the probabilities to find spin configurations

in other words, the last term ifL3) vanishes. We are left With +Ncsand —Ncsto be equal we restrict the angle vari-
with able « to the intervala €[ 0,7]. Let us now consider a vor-

tex with chargex 1. If we rotate this vortex adiabatically
through 2 over a long period of time the contribution to the
Hes= qu: f do/\dwg (16) partition function(21) is expf«), i.e., the vortex has an in-
ternal angular momentura/27r. For a= 7 this vortex be-
or, according to the Poincare duality, with haves like a fermion. Since we identify a vortex on a
plaguette by computing the winding number of the phase
_ angle # around that plaquette according to E8) the vorti-
Hes= k% Zaranl dé, (7 ces have only charges1; we can give these vortices an
, , , , arbitrary internal angular momentum or spin depending on
where we integrate along thuth vortex line now. Sincé is  the yalue ofe. If we again think of our model as describing
not defined at the center of a vortex we have to give thg,grtices moving in Euclidean time and if we only consider
integral vortices of charger 1, it seems tempting to assume that now
the lowest-energy state consists of pairs of vortices with op-
j de (18) posite charge and opposite spin. This pairing mechanism has
Iq its origin in the interaction between the vortices and the ad-

a well defined meaning. Namely, instead of integrating alongfitional interaction between the spins. Thus an attractive po-

the actual vortex line we integrate along a line infinitesimally entlal_due o the opposite spins in addition to the attractive
shifted from the original vortex line. The integréll8) mea- potential due to the opposite vortex charges between the two

sures the spin rotations,, and we obtain pa|re_d vortices |s_|ntroduced. Ag an intuitive ex_ample we can
q consider two particles of opposite charge moving in a plane.

5 If the particles have spinﬁl and ,&2, respectively, in addi-

Hes=kdm % NgMq - (19 tion to the logarithmic attraction due to the opposite charges

_ ) _ the particles feel the interaction enerWr)=f(r),&1~ﬁ2,
If we choose the constaktin (3) to be 1/47°, we can define  wherer denotes the distance between the particles fgny
the Chern-Simons numb&cs as the r-dependent coupling constant between the spins. We
expectf(r)>0, which favors pairing of opposite spins. In
NeeeS nom. 20 order to separate sugh a pair to infinite dr_stance, we need to
cs ; 4 20 overcome the attraction due to the opposite charges and the

q
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attraction due to the spin-spin interaction. Thus the separaFhe integration on the right-hand side of E&7) includes
tion energy for the particles with opposite spins is higheronly those configurations whose value for the Chern-Simons
than for the particles without spins. Thus the critical tem-number isNcs. The expectation valu€5) can then be ex-
perature where infinitely separated vortex pairs break up inpressed as

creases with the increasing value of the spin. Singe-

and thusV«= a2 the critical temperaturd@(«) should grow <O>:ZflE P(Ncs)<O>NCSeXp(iaNcs), (28)
as Ncs

)2 where
—) : (22)

a

Te(a)=T(0)+g
exp —B7#%). (29

1
(Ones= P(Ncs)f H do,

whereg is a constant andi;(0) is the critical temperature of

N
the three-dimensionat-y model. This is what we indeed CS
find in our numerical study of the modé&21) as described in In a real computer simulation we are able to compute
Sec. IV. p(Ncg), Z, and(O)y_, to a sufficient accuracy. Therefore
using (28) we can compute the average val@). For our
ll. THE PHYSICAL OBSERVABLES simulation we assump(Ncg) and(O)y to be even func-
AND MONTE-CARLO METHOD tions with respect tdcs, i.€., all expectation values are real.

_ - _ The simulation is done as follows. We generate a spin
The physical quantities we would like to compute for the configuration according to the probability distribution
model (21) are the specific heat and the helicity modulus

Y, . The specific heat is obtained by P[ 6]xexp — B.7), (30
(T2)— ()2 by using Wolff’s 1-cluster algorithrA* We measure the
C=[32#, (23 Chern-Simons numbeéX g of this configuration, increment

p(N¢co by 1 and add the value of the observaBléNcg) to
where V denotes the volume of the lattice. The helicity a table containing all the value®(N¢g) labeled by the
modulus is defined as followf$:?2 Chern-Simons numbers. Next a new spin configuration is

created. The histogram(Ncg) is proportional to the distri-

Y, 1 D s s, bution (27), the arithmetic average of the valu@$§Ncg) for
ERRAYH! cog 6, — 0;)(e,- €;) a given value ofNcs yields an estimate fo{O)y_. This
p ) allows us to calculate the average val@) given by (28).
. > - The accuracy of this method can be improved by using re-
a V< (%:) SIn(6 = 6;)€,- E”) > ’ (4 weighting technique$’

) We computed the helicity modulus and the specific heat
e, is the unit vector in the corresponding bond direction andon lattices of size& XL XL with L=4, 5, 6, 8, 10. Periodic
& is the vector connecting the lattice siieand]. Since our ~boundary conditions were applied. We carried out of the or-

system is isotropic we will omit the vector notation for the der of 50000 thermalization steps and of the order of
helicity modulus in the following. 2 000 000 measurements. The computations were performed

The expectation values if21) and (22) are computed ©On @ heterogeneous environment of workstations that include
with respect to the partition functiah given by the expres- Sun, IBM RS/6000, and DEC alpha AXP workstations. Due
sion (21), i.e., the expectation value of a physical observable© the reweighting procedure and the broadening of the den-
O is obtained according to sitiy distribution p(Ncg) with larger lattices, runs on lattices

with L>10 become extremely time consuming. Therefore
- we restricted ourselves to the above lattice sizes.
<o>=z—1f I d6,0[ 6lexp(— B77+iaNcs). (25
i
IV. RESULTS

In order to compute expectation valu€&5) using the
Monte Carlo method we proceed as in Ref. 23. The partitior{io
function given by Eq(21) can be rewritten as follows:

Let us first calculate the normalized probability distribu-
n of the Chern-Simons numb&{(N¢g defined as

P(Ngg = —PNes)
zzNz p(Ncglexp(iaNcy), (26) S SN p(Neg)

where N and p(N¢g are defined by Eq920) and (27).
Figure 1 shows the distribution functid®(N¢g) for different
lattice sizes and different temperatures. As can be seen
P(Ncg is strongly affected by the size of the system and the
temperature. Namely, by increasing the lattice size or the

expl— B.7). (270  temperature we observe a broadening of the probability dis-
Ncs tribution P(N¢g).

(31)

with p(N¢g) being the density of the configurations whose
value for the Chern-Simons numberNg.s. This density is
given by

p(Neo= [ 1T a0,
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FIG. 1. The probability distributio®P(Ncg) for different lattice

. FIG. 2. The helicity modulusY(T,L) as a function ofT,
sizes and temperatures.

a=0.

In order to create the Chern-Simons numiigg a certain  he values ofy (T, L) for botha=0 anda= are about the
amount of energ¥y_ is required. If we assume this energy same. Thus the spin stiffness becomes larger when the vor-

to be independent dfl .5 we can write forP(Nc¢g): tices have a nonzero spin. Therefore we expect the critical
temperature to grow with increasing
P(Ncs)ocexp(—,BENCSNcs). (32 In order to find a rough estimate for the critical tempera-

tures at variousa we plot the dimensionless quantity
Thus the sIopeNgsllnP(Ncs)=—ﬁENcs. The constant LY(T,L,a)/J versusT. Following the finite-size scaling

6 .
slopes can be seen in Fig. 1 for large valuedNgfs. The theory?® we expect to find that
energyEy_ itself depends on the lattice siteand the tem-

perature LY(T,L,a) ( L ) -
. _ »
J &(T)
A. The helicity modulus close to the critical temperatur€,(a). &(T) denotes the

Here we investigate the finite-size scaling behavior of thecorrelation length of the infinitely extended system drisla

helicity modulus for different values of the parameterWe unlversallfuncuon. Afrc(a) the qorrelatlon Ier)gth is infinite,
use the finite-size scaling properties of the helicity modulu§hus for fixedL the right-hand side of Eq33) is a constant.
to extract an estimate for the-dependent critical tempera-

ture T.(«) and to study thew dependence of the critical 1.0 . .
exponentr of the helicity modulus.

At this point we would like to mention one difficulty we
encountered in the course of our computations. Because of 08
the imaginary part in the partition functig@l) the error bars
of the computed quantities grow with increasing values of
a. As long as the distributioP(N ) is sharply peaked 06
aroundNcs=0 the error bars are reasonably small. This hap-
pens for small temperatures and small lattice sizédg-ig. 1
for the different shapes d?(Ncg and Figs. 2 and 3 for the 04
size of the error bajs For larger temperatures and larger 7
lattices P(Ncg) grows broader and broader, which requires o L=6 ﬁ%

o

Y(T,L)

longer and longer simulation times in order to keep the error 02t s L=8
bars reasonably small. Therefore we restricted our computer *L=10
simulations to lattices with at most 1000 lattice sites. v L
In Figs. 2 and 3 we plot our data for the helicity modulus 0.0 ) :
with respect to temperature far=0 and =, respec- 05 15 25 35
tively. We see that the values of the helicity modulus corre-
sponding toa= 7 are larger than the ones pertaining to
a=0 for temperaturesT=1.7. In general we find FIG. 3. The helicity modulusY(T,L) as a function ofT,
Y(T,L,a)=Y(T,L,ay) if a;>a,. For low temperatures a=1.
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TABLE |. The critical temperature for different values of

a To(@)

0 2.20612)

4 2.22713)

72 2.32911)
37l4 2.538)
T 2.6510)

LY(T,L)J

where the reduced temperature 1—T/T («). We intro-
duced a possiblex dependence of the constafitand the
critical exponent v in formula (34). We have
v(0)=0.6705%""2° With the help of(34) we may rewrite
expression(33) as follows:

0.0 : : : :
© 18 2.0 2.2 2.4

T LY(T,L,a)
J

=L@ q). (35)
FIG. 4. LY (T,L)/J as a function ofl, a=0.

Equation(35) means that we obtain one universal curve for
all values ofL if we plot LY (T,L,a)/J versustLY"(®), This

) is indeed the case far=0, which is demonstrated in Fig. 6.
LY(T,L,e)/J vs T for «=0 and a=m/2, respectively. The data collapse on one universal curve for

From the plots we read offT (0)=2.206(12) and ) 10~ _1 g, for the plot we used,(0)=2.206(cf. Table
T.(7/2)=2.329(11). The error bars where estimated Wlthl) and »(0)=0.6705. We are now in a position to check the

respect to the scattering of the intersection points. Using the, dependence of the critical exponent If the inequality
described method we obtained estimates of the critical temﬁ(a)¢0_6705 is true we will not find a universal curve by
peratures fora=0,7/4,7/2,3w/4 (cf. Table ). For a== plotting LY (T, L, a)/J vstLY067% |n Fig. 7 we demonstrate
this method of determining is not accurate enough due to . collapse ,of, our data points far=m/2 with Ty(/2)
. . C
the large error bars oLY(T,L)/J. We will determine — _5 359 (¢f. Table ) and v(/2)=0.6705. We found this
Te(m) approximately using a different technique as dis-¢anse of our data also far=7/4 anda=3w/4 when the
cusl,sed ;urther bhelolv'.f h itical b value of v=0.6705 was taken. So far our results suggest that
n order to check If the critical exponent becomesa o critical exponent be independent of the parameter

d.e.pen(_jent let us explore formui@3) a little more. From the In the model considered by Chen, Fischer, and YMie
finite-size scaling theory we know tHat critical exponentr depends ona and covers the range
[0.6705,] for a[0,7]. In particular for a=3xw/4 we

Therefore all the curvekY (T,L,«)/J intersect in one point
whose abscissa i9.(a). In Figs. 4 and 5 we show

E(t—0)=A(a)|t] ™, (34
5.0 ; . .
E'S
iy
40 + o, oF OC=O |
= &
;E B * L=10
529 A L=8
2 3.0 mgi o L6 g
2 3 <8 oL=5
= ; S5 oL=4
L a i & i
> 2.0 5
1.0 T=2206 @@% 1
@&e@
0.0 L ! I > &! 8 8 & =)
-5.0 -3.0 -1.0 1.0 3.0 5.0

FIG. 6. LY(T,L)/J as a function of tL*” for a=0,
FIG. 5. LY (T,L)/J as a function ofT, a= /2. v=0.6705,T.=2.206.



4788

5.0 ; ; . .
40 & =0.57 1
Pez 2
* L=10
§E§ A L=8
2307 %?g o L=6 |
3 e 5 L5
= -
= % olL=4
20} g% .
&
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5.0

FIG. 7. LY(T,L)/J as a function oftL¥ for a=mu/2,

v=0.6705,T.=2.329.

should haver=0.85 In order to compare scaling of the
helicity modulus withy=0.85 andv=0.6705, respectively,

we employ the scaling form:

Y(T,L,«
J

whereg(x,a)=x*”?(x,a). This scaling form is more sen-

d- =gt a),

(36)

sitive to the value ofv than the expressiof85). From Eq.
(36) we conclude that in the limi(t)<L, i.e., in the bulk

critical limit, the left-hand side of Eq36) becomes a con-
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T g g

10 A
v=0.85

Y(T, L)t

* L=10
aL=8
o L=6
o0L=5
olL=4

0.0 ! !
-6.0 -4.0 -2.0 0.0

tI_1/v

FIG. 9. |[t|7"Y(T,L)/J as a function oftLY” for a=3w/4,
»=0.85, T,=2.52.

line whenv=0.6705 is used, whereas there is no scaling for
v=0.85. Furthermore, a slight variation of the value iof
aroundr=0.6705 revealed that the data collapse was pos-
sible within error bars foo=0.67=0.07. If in our model the
critical exponentr depends orr at all then this dependence
is rather weak, the possible values idiw) do not cover the
range[ 0.6705,] for a e[0,7r]. We are not surprised that we
obtain a different result than do Chen, Fisher, and'\\as

our model and the one considered in Ref. 11 are not equiva-
lent. The difference lies in the way we incorporate the Chern-
Simons term into the theory as was outlined in the Introduc-
tion. In our theory(21) the statistics changing gauge field is

stant. In this case the data collapse onto a straight line. Igenerated by the topological current causing the nonlocality
Figs. 8 and 9 we show the corresponding scaling plots fobf the Chern-Simons ternicompare also Ref. 13 The
a=3m/4 where we used'=0.6705 and 0.85, respectively. Chern-Simons gauge field in the action used by Chen, Fisher,
The values for the helicity modulus collapse onto a straightind Wit is a truly fluctuating field minimally coupled to the
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FIG. 8. |[t|7"Y(T,L)/J as a function oftLY" for a=3x/4,

»=0.6705,T,=2.52.

complex order parameter. We only mention here that the two
actions are equivalent if the order parameter has at least two
complex componentS. The argument employed by the au-
thors of Ref. 15 does not work in our case of a one-
component complex order parameter.

Since our results indicate thatis not affected when the
x-y model is coupled to the Chern-Simons term defined in
Sec. Il according tg21) we are able to estimate the critical
temperature T,(7), namely, we plot LY(T,L)/J vs
tLY067%5hyt vary the value foif () until our data points
collapse onto one universal curve. This can be achieved rea-
sonably well forT () =2.65(10). The scaling function thus
obtained is displayed in Fig. 10. We notice that the range of
tLY/0-6705 where the data collapse on one universal curve
seems larger for larget.

In Fig. 11 we notice that the critical temperaturg( «)
increases monotonically with increasing In order to check
whether our values fof;(«) are consistent with the expres-
sion (22) we fitted the functional form(22) to the critical
temperature values given in Table | with the fixed parameter
T.(0)=2.206. We obtained)=0.484+0.038 and the fit is
given by the parabola in Fig. 11. Since the parabola fits the
computed values fof.(«) rather well, we can think of the
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FIG. 10. LY(T,L)/J as a function oftLY” for a=m, FIG. 12. The specific heat for various lattice sizes as a function
»=0.6705T.=2.65 of temperature atr=0.
. ,Tc=2.65.
x-y model with the Chern-Simons ter@20) as describing Figures 12 and 13 show the specific heat for various lat-

vortices with spin+a/(27) moving in Euclidean time, tice sizes atv=0 anda= /2, respectively. At low tempera-
which interact through the potential due to the vortex chargesures the specific-heat data agree for all lattice sizes and alll

and the spin-spin interaction potentiake?. values ofa. This should be the case since at these tempera-
tures the correlation length is smaller than the lattice kize
B. The specific heat thus the specific heat does not feel the finite size of the sys-

tem. Furthermore the probability of finding the Chern-
Simons numbeNs# 0 is very small, i.e., the parameter
does not have any influence on the physical quantities at all.
However, for temperatures closer to the critical temperature
T.(0) we find that the values of the specific heat become
smaller with increasinge. This effect is independent of the
system sizel (cf. Figs. 12 and 1B Our findings seem to
indicate that the finite value of the specific heat
c[T.(a),L=c] is a dependent and decreases with increas-
ing «. However, in order to determine these values to a

In this section we briefly comment on the behavior of the
specific heat with respect to the spin coefficient

Since the critical exponent of the correlation length
does not depend oa (cf. the previous sectigrthe critical
exponent of the specific heat cannot depend o either
due to the hyperscaling assumptian=2—3v. We denote
the critical exponent of the specific heat byinstead ofa
(which is commonly used in the literature to denote the
specific-heat critical exponenin order to avoid confusion
with the parameter of this papercf. Eq. (21)].
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FIG. 11. The critical temperaturds(«) as a function ofx. The FIG. 13. The specific heat for various lattice sizes as a function

solid line represents E@22) with T ,(0)=2.206 andy=0.484. of temperature atv= 7/2.
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sufficient accuracy, computations on much larger latticegstimate the critical temperatures and to check the influence
have to be performed, which require very long computatiorof the Chern-Simons term on the critical exponentOur
times due to the broadening of the probability distributionfindings suggest that the-y model coupled to the Chern-
P(Nc9). Simons term following Wilcek and Zé&belongs to thex-y
universality class, however, the critical temperature and the
V. SUMMARY finite bulk value of the specific heat at the critical tempera-

) ) ture depend on.
We have coupled the three-dimensioray model to the

Chern-Simons term in the spirit of Wilczek and Zéghus
endowing the vortices with a spin/(27). We have inves-
tigated the influence of the Chern-Simons term on the critical
behavior. The geometrical interpretation of this term enabled We would like to thank S. Kivelson for his valuable com-
us to compute the Chern-Simons number for an arbitrarynents on the first version of our paper. N.S. enjoyed discus-
spin configuration on the lattice. We computed the helicitysions with L. Pryadko and would like to thank D. W. Sum-
modulus and the specific heat dnxL XL lattices up to ners and E. Klassen for discussing the form language and the
L=10 by means of a Monte Carlo simulation. Periodic nature of Chern-Simons terms. This work was supported by
boundary conditions were applied in all directions. We usedhe National Aeronautics and Space Administration under
the finite-size scaling properties of the helicity modulus toGrant No. NAGW-3326.
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