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We introduce a model where a Chern-Simons term is coupled to the three-dimensionalx-y model. This term
endows vortices with an internal angular momentum and thus they acquire arbitrary statistical character. In our
interpretation of the Chern-Simons term in the three-dimensionalx-y model, it takes an integer value that can
be written as a sum over all vortex lines of the product of the vortex charge and the winding number of the
internal phase angle along that vortex line. We have used the Monte Carlo method to study the three-
dimensionalx-y model with the Chern-Simons term. Our findings suggest that this model belongs to thex-y
universality class with the critical temperature growing with increasing internal angular momentum.

I. INTRODUCTION

A phenomenological theory, similar to the Landau-
Ginzburg theory, which describes aspects of the integer and
fractional quantum Hall effect is the Chern-Simons-Landau-
Ginzburg~CSLG! theory.1–4 In such a description, the elec-
trons are minimally coupled to a statistics changing ‘‘electro-
magnetic’’ field whose action is the topological Chern-
Simons term. The CSLG theory has been used by several
authors to study the transitions from a quantum Hall liquid to
the quantum Hall insulator5,6 and the transitions between dif-
ferent quantum Hall liquids, i.e., between different quantum
Hall plateaus. Jain, Kivelson, and Trivedi advanced the idea
that the transitions between different quantum Hall states be-
long to the same universality class~within a certain family!,7

i.e., the critical exponents characterizing these transitions are
independent of the filling factor and thus of the statistics of
the quasiparticles. This argument can also be made using
duality considerations.1

On the other hand, there have been studies of relativistic
versions~where disorder is completely absent! of the Chern-
Simons-Landau-Ginzburg theory which attempt to determine
the dependence of the critical properties on the coefficient in
front of the Chern-Simons term.8–12 The authors of Refs. 9
and 10 study the O(N) model and use a 1/N expansion,
whereN is the number of components of the order param-
eter, to compute the critical exponents. They find that the
critical exponents depend on the coefficient in front of the
Chern-Simons term. The authors of Ref. 11 consider the
Dirac theory in three dimensions and perform a perturbative
expansion in the Chern-Simons coefficient to find the critical
exponents of the theory to vary with this coefficient. In Ref.
12 an expansion up to one loop of the scalarf4 theory
coupled to the Chern-Simons term is used to study the criti-
cal properties of this theory. It was found that the fluctuations
in the gauge field reduce the order of the transition from
second order in the absence of the gauge field to first order in
the presence of these fluctuations. We remark that the scalar
f4 theory without the gauge field and close to the critical
point is equivalent to the O~2! or x-y model. Therefore the

question as to whether and to what extent the statistics of the
quasiparticles change the critical properties of a physical sys-
tem is still controversial.

This problem can be studied further by numerical inves-
tigation of the critical properties of a relatively simple model
coupled to the Chern-Simons term. In this paper we couple
the three-dimensionalx-y model @or O~2! model# to the
Chern-Simons term following the approach of Wilczek and
Zee13 who studied the nonlinear sigma@O~3! invariant
model# coupled to a Hopf term. We investigate how this
topological Chern-Simons term influences the critical prop-
erties of this new model and we study whether or not they
are different from the critical properties of thex-y model
itself.

We wish to emphasize here that there are two ways of
introducing the Chern-Simons term in the theory; first, it can
be introduced by minimally coupling a fluctuating U~1!
gauge field to the complex matter fieldf where the action of
the gauge field is just the Chern-Simons term.12,14 In this
case the field quanta acquire different statistics in the long-
wavelength limit. Second, one can define a U~1! gauge field
through a conserved current and add the Chern-Simons term
for this gauge field to the Lagrangian.13,15,16Then extended
particles such as skyrmions in the O~3! model13 and vortices
in the x-y model acquire different statistics.

Thex-y model without the Chern-Simons term in two and
three dimensions has been studied extensively~cf., e.g., Ref.
17!. It was found that vortex excitations play a crucial role in
the phase transition. Kosterlitz and Thouless showed that the
pairing of vortices in thex-y model causes a phase transition
in two dimensions.18 In three dimensions the vortex strings
seem responsible for the occurrence of the phase transition,19

which has the character of an order-disorder phase transition.
The remarkable property of thex-y model is that the topo-
logical objects, vortices in two and vortex lines in three di-
mensions, which are responsible for the occurrence of the
phase transition, do not explicitly appear in the model. They
are rather created dynamically and extended over long length
scales. Thus we can consider thex-y model as a microscopic
field theory that contains quasiparticles that are extended ob-
jects over long length scales and interact through a potential
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created by the interaction of the microscopic degrees of free-
dom. In the two-dimensionalx-y model the quasiparticles
are the vortices that interact through a logarithmic potential,
while the microscopic degrees of freedom are elementary
and are coupled by a nearest-neighbor potential~cf. the next
section!. The three-dimensionalx-y model can then be
viewed as describing two-dimensional vortices moving in
Euclidean time. By coupling the three-dimensionalx-y
model to the Chern-Simons term we can give the vortices an
internal angular momentum taking values between 0 and
1/2. Since the internal angular momentum of the particles is
closely related to statistics, quasiparticles whose statistical
character can be interpolated between that of a boson and a
fermion, are dynamically created.

In order to introduce the Chern-Simons term in the three-
dimensionalx-y model we need to identify a current. The
natural choice in this case is the vortex current that, since it
is represented by the vortex lines, can be easily identified.
Since the vortex current is conserved we can write it as the
curl of a vector potentialAW , which enters into the definition
of the Chern-Simons term. It turns out that each single vortex
line gives a contribution to the Chern-Simons term which is
the product of the vortex charge and the winding number of
the internal phase angle~cf. the next section! along that vor-
tex line. This interpretation of the Chern-Simons term en-
ables us to compute this term for an arbitrary lattice field
configuration. We then couple the Chern-Simons term to the
x-y model and compute the helicity modulus and the specific
heat for this new model. The finite-size analysis of these
quantities leads us to the conclusion that thex-y model with
the Chern-Simons term exhibits the same critical properties
as thex-y model itself.

The details concerning these introductory remarks are de-
scribed in the following sections. In the next section we in-
troduce the three-dimensionalx-y model and derive the ex-
pression for the Chern-Simons term for this model. The
partition function for thex-y model with the Chern-Simons
term is also given. In Sec. III we describe the physical ob-
servables such as the helicity modulus and the specific heat
and discuss the numerical method, which we employed to
compute these quantities. Our results are given in Sec. IV. In
the last section we briefly summarize our findings.

II. THE CHERN-SIMONS TERM IN THE x-y MODEL

In this section we define thex-y model and give a geo-
metrical interpretation of the Chern-Simons term for this
model.

The partition function of thex-y model on the lattice is
defined as

Z5E )
j
du jexp~2bH!, ~1!

whereb5J/kBT and

H52(
^ i , j &

sW i•sW j . ~2!

The sum in ~2! runs over nearest neighbors,
sW i5(cosui ,sinui) is a two-component vector, which is con-
strained to be on the unit circle andJ sets the energy scale.

Before we turn to the construction of the Chern-Simons
term for thex-y model let us briefly discuss the case of the
O~3! model. This model is different from thex-y model only
in that the spin space is a unit sphere in three dimensions.
The equation of motion of the O~3! model admits soliton
solutions also known as skyrmions. Wilczek and Zee13

showed that the skyrmions can be given arbitrary statistics if
the Langrangian of the O~3! model is coupled to the Chern-
Simons term. Some of the arguments of Wilczek and Zee can
be applied to the case of thex-y model in a straightforward
manner. Furthermore we will make use of the ‘‘form’’ lan-
guage~see, for example, Ref. 20! because this formalism is
very convenient for our purposes.

The Chern-Simons termHCS for an Abelian gauge fieldA
is defined as follows:

HCS5kE A`dA, ~3!

where

A5Amdx
m, ~4!

dA5]nAmdx
n`dxm. ~5!

The constantk in ~3! will be specified later. The symbols in
Eqs.~3!–~5! and in the following are defined as in Ref. 20.

Let us consider a spin configuration withq vortex lines on
a L3 lattice with periodic boundary conditions. Each vortex
line represents a vortex of an integer vortex chargenqPI .
Due to the periodic boundary conditions all vortex lines are
closed. If we travel along a vortex line the spins forming the
vortex may rotate in the internal spin space. This vortex line
is topologically different from a vortex line, representing the
same vortex charge but with a different number of spin rota-
tions. We expect the Chern-Simons number~3! to contain
this information.

Given a conserved currentj a gauge fieldA can be con-
structed by13

dA5! j . ~6!

In our casej is the current 1-form whose support is the
vortex lines. We write

j5(
q

j q , ~7!

where j q denotes theqth individual vortex current. The vor-
tex chargenq is obtained from

E
]Cq

du52pnq , ~8!

]Cq is an arbitrary contour enclosing the core of theqth
vortex line,u is the spin angle. Note also that

E
Cq

! j52pnq , ~9!

whereCq is the surface bounded by the curve]Cq . We want
the gauge fieldA to satisfy the following condition:
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E
]Cq

A52pnq , ~10!

or equivalently by the Gauss-Bonnet theorem

E
Cq

dA52pnq . ~11!

Let us try the ansatz

A5du1(
q

vq , ~12!

where the support of the 1-formsvq is also restricted to the
vortex lines. Using

dvq5! j q ~13!

we are able to satisfy~10! and ~11!.
Equation~3! takes the following form now:

HCS5kE S du1(
q

vqD `(
q8

dvq8 ~14!

5k(
q
E du`dvq1k(

q
E vq`dvq . ~15!

Let us spread out the vortex lines, i.e., we define the support
of the formsvq to be a thin tube of radiuse→0 around the
vortex lines. Introducing a comoving 3-bein as a local coor-
dinate system to expressvq locally, we realize thatvq has
components only in a disk perpendicular to its vortex line, or
in other words, the last term in~13! vanishes. We are left
with

HCS5k(
q
E du`dvq ~16!

or, according to the Poincare duality, with

HCS5k(
q

2pnqE
l q

du, ~17!

where we integrate along theqth vortex line now. Sinceu is
not defined at the center of a vortex we have to give the
integral

E
l q

du ~18!

a well defined meaning. Namely, instead of integrating along
the actual vortex line we integrate along a line infinitesimally
shifted from the original vortex line. The integral~18! mea-
sures the spin rotationsmq , and we obtain

HCS5k4p2(
q

nqmq . ~19!

If we choose the constantk in ~3! to be 1/4p2, we can define
the Chern-Simons numberNCS as

NCS5(
q

nqmq . ~20!

From here we can immediately see thatNCS changes its sign
under parity or time-inversal transformations. Let us con-
sider thez axis as the Euclidean time axis. Then we can think
of our model as describing vortices moving in time. A closed
loop corresponds to the creation of a vortex and antivortex
that move apart and are annihilated after some time. Time-
inversion inverses the path in the integral~16!, i.e., changes
the sign ofmq , but leaves the vortex chargenq unchanged,
whereas a parity transformation inverses the path in the in-
tegral ~10!, i.e., changes the sign ofnq , but leaves the spin
rotationsmq unchanged.

In order to determine the Chern-Simons numberNCS for a
configuration of spins$sW i% on the lattice we need to measure
the spin rotationsmq along the vortex lines. The vortex lines
are perpendicular to the plaquettes and can be found by mak-
ing use of the conservation of the vortex current, if a cube
has an ingoing vortex current, it has an outgoing vortex cur-
rent as well. The spin rotationsmq can be measured as fol-
lows. After introducing a comoving 3-bein that moves along
the vortex line and fixing the position of an arbitrary spin
with respect to the 3-bein, we determine how often a spin at
our fixed position rotates when we travel along the vortex
line.

In the presence of the Chern-Simons termHCS we define
the partition function of thex-y model as follows:13

Z5E )
j
du jexp~2bH1 iaN CS!. ~21!

Since we expect the probabilities to find spin configurations
with 1NCS and2NCS to be equal we restrict the angle vari-
ablea to the intervalaP@0,p#. Let us now consider a vor-
tex with charge61. If we rotate this vortex adiabatically
through 2p over a long period of time the contribution to the
partition function~21! is exp(ia), i.e., the vortex has an in-
ternal angular momentuma/2p. For a5p this vortex be-
haves like a fermion. Since we identify a vortex on a
plaquette by computing the winding number of the phase
angleu around that plaquette according to Eq.~8! the vorti-
ces have only charges61; we can give these vortices an
arbitrary internal angular momentum or spin depending on
the value ofa. If we again think of our model as describing
vortices moving in Euclidean time and if we only consider
vortices of charge61, it seems tempting to assume that now
the lowest-energy state consists of pairs of vortices with op-
posite charge and opposite spin. This pairing mechanism has
its origin in the interaction between the vortices and the ad-
ditional interaction between the spins. Thus an attractive po-
tential due to the opposite spins in addition to the attractive
potential due to the opposite vortex charges between the two
paired vortices is introduced. As an intuitive example we can
consider two particles of opposite charge moving in a plane.
If the particles have spinsmW 1 andmW 2 , respectively, in addi-
tion to the logarithmic attraction due to the opposite charges
the particles feel the interaction energyV(r )5 f (r )mW 1•mW 2 ,
wherer denotes the distance between the particles andf (r )
the r -dependent coupling constant between the spins. We
expect f (r ).0, which favors pairing of opposite spins. In
order to separate such a pair to infinite distance, we need to
overcome the attraction due to the opposite charges and the
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attraction due to the spin-spin interaction. Thus the separa-
tion energy for the particles with opposite spins is higher
than for the particles without spins. Thus the critical tem-
perature where infinitely separated vortex pairs break up in-
creases with the increasing value of the spin. SinceumW u}a
and thusV}a2 the critical temperatureTc(a) should grow
as

Tc~a!5Tc~0!1gS a

p D 2, ~22!

whereg is a constant andTc(0) is the critical temperature of
the three-dimensionalx-y model. This is what we indeed
find in our numerical study of the model~21! as described in
Sec. IV.

III. THE PHYSICAL OBSERVABLES
AND MONTE-CARLO METHOD

The physical quantities we would like to compute for the
model ~21! are the specific heatc and the helicity modulus
Ym . The specific heat is obtained by

c5b2 ^H2&2^H&2

V
, ~23!

where V denotes the volume of the lattice. The helicity
modulus is defined as follows:21,22

Ym

J
5
1

V K (
^ i , j &

cos~u i2u j !~eWm•eW i j !
2L

2
b

V K S (
^ i , j &

sin~u i2u j !eWm•eW i j D 2L , ~24!

eWm is the unit vector in the corresponding bond direction and
eW i j is the vector connecting the lattice sitesi and j . Since our
system is isotropic we will omit the vector notation for the
helicity modulus in the following.

The expectation values in~21! and ~22! are computed
with respect to the partition functionZ given by the expres-
sion ~21!, i.e., the expectation value of a physical observable
O is obtained according to

^O&5Z21E )
j
du jO@u#exp~2bH1 iaNCS!. ~25!

In order to compute expectation values~25! using the
Monte Carlo method we proceed as in Ref. 23. The partition
function given by Eq.~21! can be rewritten as follows:

Z5(
NCS

r~NCS!exp~ iaNCS!, ~26!

with r(NCS) being the density of the configurations whose
value for the Chern-Simons number isNCS. This density is
given by

r~NCS!5E )
i
du i U

N CS

exp~2bH!. ~27!

The integration on the right-hand side of Eq.~27! includes
only those configurations whose value for the Chern-Simons
number isNCS. The expectation value~25! can then be ex-
pressed as

^O&5Z21(
NCS

r~NCS!^O&NCSexp~ iaNCS!, ~28!

where

^O&NCS5
1

r~NCS!
E )

i
du i U

NCS

exp~2bH!. ~29!

In a real computer simulation we are able to compute
r(N CS), Z, and ^O&NCS to a sufficient accuracy. Therefore

using ~28! we can compute the average value^O&. For our
simulation we assumer(NCS) and ^O&NCS to be even func-

tions with respect toNCS, i.e., all expectation values are real.
The simulation is done as follows. We generate a spin

configuration according to the probability distribution

P@u#}exp~2bH!, ~30!

by using Wolff’s 1-cluster algorithm.24 We measure the
Chern-Simons numberNCS of this configuration, increment
r(NCS) by 1 and add the value of the observableO(NCS) to
a table containing all the valuesO(NCS) labeled by the
Chern-Simons numbers. Next a new spin configuration is
created. The histogramr(NCS) is proportional to the distri-
bution ~27!, the arithmetic average of the valuesO(NCS) for
a given value ofNCS yields an estimate for̂O&NCS. This
allows us to calculate the average value^O& given by ~28!.
The accuracy of this method can be improved by using re-
weighting techniques.25

We computed the helicity modulus and the specific heat
on lattices of sizesL3L3L with L54, 5, 6, 8, 10. Periodic
boundary conditions were applied. We carried out of the or-
der of 50 000 thermalization steps and of the order of
2 000 000 measurements. The computations were performed
on a heterogeneous environment of workstations that include
Sun, IBM RS/6000, and DEC alpha AXP workstations. Due
to the reweighting procedure and the broadening of the den-
sitiy distributionr(NCS) with larger lattices, runs on lattices
with L@10 become extremely time consuming. Therefore
we restricted ourselves to the above lattice sizes.

IV. RESULTS

Let us first calculate the normalized probability distribu-
tion of the Chern-Simons numberP(NCS) defined as

P~NCS!5
r~NCS!

(NCS
r~N CS!

, ~31!

whereNCS and r(NCS) are defined by Eqs.~20! and ~27!.
Figure 1 shows the distribution functionP(NCS) for different
lattice sizes and different temperatures. As can be seen
P(NCS) is strongly affected by the size of the system and the
temperature. Namely, by increasing the lattice size or the
temperature we observe a broadening of the probability dis-
tribution P(NCS).
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In order to create the Chern-Simons numberNCS a certain
amount of energyENCS

is required. If we assume this energy

to be independent ofN CS we can write forP(NCS):

P~NCS!}exp~2bENCS
NCS!. ~32!

Thus the slopeNCS
21lnP(NCS)52bEN CS

. The constant

slopes can be seen in Fig. 1 for large values ofN CS. The
energyENCS

itself depends on the lattice sizeL and the tem-
perature.

A. The helicity modulus

Here we investigate the finite-size scaling behavior of the
helicity modulus for different values of the parametera. We
use the finite-size scaling properties of the helicity modulus
to extract an estimate for thea-dependent critical tempera-
ture Tc(a) and to study thea dependence of the critical
exponentn of the helicity modulus.

At this point we would like to mention one difficulty we
encountered in the course of our computations. Because of
the imaginary part in the partition function~21! the error bars
of the computed quantities grow with increasing values of
a. As long as the distributionP(N CS) is sharply peaked
aroundNCS50 the error bars are reasonably small. This hap-
pens for small temperatures and small lattice sizes~cf. Fig. 1
for the different shapes ofP(NCS) and Figs. 2 and 3 for the
size of the error bars!. For larger temperatures and larger
latticesP(NCS) grows broader and broader, which requires
longer and longer simulation times in order to keep the error
bars reasonably small. Therefore we restricted our computer
simulations to lattices with at most 1000 lattice sites.

In Figs. 2 and 3 we plot our data for the helicity modulus
with respect to temperature fora50 and a5p, respec-
tively. We see that the values of the helicity modulus corre-
sponding toa5p are larger than the ones pertaining to
a50 for temperaturesT>1.7. In general we find
Y(T,L,a1)>Y(T,L,a2) if a1.a2 . For low temperatures

the values ofY(T,L) for botha50 anda5p are about the
same. Thus the spin stiffness becomes larger when the vor-
tices have a nonzero spin. Therefore we expect the critical
temperature to grow with increasinga.

In order to find a rough estimate for the critical tempera-
tures at variousa we plot the dimensionless quantity
LY(T,L,a)/J versusT. Following the finite-size scaling
theory26 we expect to find that

LY~T,L,a!

J
5 f S L

j~T!
,a D ~33!

close to the critical temperatureTc(a). j(T) denotes the
correlation length of the infinitely extended system andf is a
universal function. AtTc(a) the correlation length is infinite,
thus for fixedL the right-hand side of Eq.~33! is a constant.

FIG. 1. The probability distributionP(NCS) for different lattice
sizes and temperatures.

FIG. 2. The helicity modulusY(T,L) as a function ofT,
a50.

FIG. 3. The helicity modulusY(T,L) as a function ofT,
a5p.

4786 53NORBERT SCHULTKA AND EFSTRATIOS MANOUSAKIS



Therefore all the curvesLY(T,L,a)/J intersect in one point
whose abscissa isTc(a). In Figs. 4 and 5 we show
LY(T,L,a)/J vs T for a50 and a5p/2, respectively.
From the plots we read offTc(0)52.206(12) and
Tc(p/2)52.329(11). The error bars where estimated with
respect to the scattering of the intersection points. Using the
described method we obtained estimates of the critical tem-
peratures fora50,p/4,p/2,3p/4 ~cf. Table I!. For a5p
this method of determiningTc is not accurate enough due to
the large error bars ofLY(T,L)/J. We will determine
Tc(p) approximately using a different technique as dis-
cussed further below.

In order to check if the critical exponentn becomesa
dependent let us explore formula~33! a little more. From the
finite-size scaling theory we know that26

j~ t→0!5A~a!utu2n~a!, ~34!

where the reduced temperaturet512T/Tc(a). We intro-
duced a possiblea dependence of the constantA and the
critical exponent n in formula ~34!. We have
n(0)50.6705.27–29 With the help of ~34! we may rewrite
expression~33! as follows:

LY~T,L,a!

J
5 f̃ ~ tL1/n~a!,a!. ~35!

Equation~35! means that we obtain one universal curve for
all values ofL if we plot LY(T,L,a)/J versustL1/n(a). This
is indeed the case fora50, which is demonstrated in Fig. 6.
The data collapse on one universal curve for
tL1/n(0).21.6, for the plot we usedTc(0)52.206~cf. Table
I! andn(0)50.6705. We are now in a position to check the
a dependence of the critical exponentn. If the inequality
n(a)Þ0.6705 is true we will not find a universal curve by
plottingLY(T,L,a)/J vs tL1/0.6705. In Fig. 7 we demonstrate
the collapse of our data points fora5p/2 with Tc(p/2)
52.329 ~cf. Table I! and n(p/2)50.6705. We found this
collapse of our data also fora5p/4 anda53p/4 when the
value ofn50.6705 was taken. So far our results suggest that
the critical exponentn be independent of the parametera.

In the model considered by Chen, Fischer, and Wu11 the
critical exponentn depends ona and covers the range
@0.6705,1# for aP@0,p#. In particular for a53p/4 we

FIG. 4. LY(T,L)/J as a function ofT, a50.

FIG. 5. LY(T,L)/J as a function ofT, a5p/2.

TABLE I. The critical temperature for different values ofa.

a Tc(a)

0 2.206~12!
p/4 2.227~13!
p/2 2.329~11!
3p/4 2.52~8!

p 2.65~10!

FIG. 6. LY(T,L)/J as a function of tL1/n for a50,
n50.6705,Tc52.206.
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should haven50.85.11 In order to compare scaling of the
helicity modulus withn50.85 andn50.6705, respectively,
we employ the scaling form:

Y~T,L,a!

J
utu2n5g~ tL1/n,a!, ~36!

whereg(x,a)5x2n f̃ (x,a). This scaling form is more sen-
sitive to the value ofn than the expression~35!. From Eq.
~36! we conclude that in the limitj(t)<L, i.e., in the bulk
critical limit, the left-hand side of Eq.~36! becomes a con-
stant. In this case the data collapse onto a straight line. In
Figs. 8 and 9 we show the corresponding scaling plots for
a53p/4 where we usedn50.6705 and 0.85, respectively.
The values for the helicity modulus collapse onto a straight

line whenn50.6705 is used, whereas there is no scaling for
n50.85. Furthermore, a slight variation of the value ofn
aroundn50.6705 revealed that the data collapse was pos-
sible within error bars forn50.6760.07. If in our model the
critical exponentn depends ona at all then this dependence
is rather weak, the possible values forn(a) do not cover the
range@0.6705,1# for aP@0,p#. We are not surprised that we
obtain a different result than do Chen, Fisher, and Wu11 as
our model and the one considered in Ref. 11 are not equiva-
lent. The difference lies in the way we incorporate the Chern-
Simons term into the theory as was outlined in the Introduc-
tion. In our theory~21! the statistics changing gauge field is
generated by the topological current causing the nonlocality
of the Chern-Simons term~compare also Ref. 13!. The
Chern-Simons gauge field in the action used by Chen, Fisher,
and Wu11 is a truly fluctuating field minimally coupled to the
complex order parameter. We only mention here that the two
actions are equivalent if the order parameter has at least two
complex components.15 The argument employed by the au-
thors of Ref. 15 does not work in our case of a one-
component complex order parameter.

Since our results indicate thatn is not affected when the
x-y model is coupled to the Chern-Simons term defined in
Sec. II according to~21! we are able to estimate the critical
temperature Tc(p), namely, we plot LY(T,L)/J vs
tL1/0.6705but vary the value forTc(p) until our data points
collapse onto one universal curve. This can be achieved rea-
sonably well forTc(p)52.65(10). The scaling function thus
obtained is displayed in Fig. 10. We notice that the range of
tL1/0.6705 where the data collapse on one universal curve
seems larger for largera.

In Fig. 11 we notice that the critical temperatureTc(a)
increases monotonically with increasinga. In order to check
whether our values forTc(a) are consistent with the expres-
sion ~22! we fitted the functional form~22! to the critical
temperature values given in Table I with the fixed parameter
Tc(0)52.206. We obtainedg50.48460.038 and the fit is
given by the parabola in Fig. 11. Since the parabola fits the
computed values forTc(a) rather well, we can think of the

FIG. 7. LY(T,L)/J as a function of tL1/n for a5p/2,
n50.6705,Tc52.329.

FIG. 8. utu2nY(T,L)/J as a function oftL1/n for a53p/4,
n50.6705,Tc52.52.

FIG. 9. utu2nY(T,L)/J as a function oftL1/n for a53p/4,
n50.85, Tc52.52.
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x-y model with the Chern-Simons term~20! as describing
vortices with spin6a/(2p) moving in Euclidean time,
which interact through the potential due to the vortex charges
and the spin-spin interaction potential}a2.

B. The specific heat

In this section we briefly comment on the behavior of the
specific heat with respect to the spin coefficienta.

Since the critical exponent of the correlation lengthn
does not depend ona ~cf. the previous section! the critical
exponent of the specific heatã cannot depend ona either
due to the hyperscaling assumptionã5223n. We denote
the critical exponent of the specific heat byã instead ofa
~which is commonly used in the literature to denote the
specific-heat critical exponent! in order to avoid confusion
with the parametera of this paper@cf. Eq. ~21!#.

Figures 12 and 13 show the specific heat for various lat-
tice sizes ata50 anda5p/2, respectively. At low tempera-
tures the specific-heat data agree for all lattice sizes and all
values ofa. This should be the case since at these tempera-
tures the correlation length is smaller than the lattice sizeL,
thus the specific heat does not feel the finite size of the sys-
tem. Furthermore the probability of finding the Chern-
Simons numberNCSÞ0 is very small, i.e., the parametera
does not have any influence on the physical quantities at all.
However, for temperatures closer to the critical temperature
Tc(0) we find that the values of the specific heat become
smaller with increasinga. This effect is independent of the
system sizeL ~cf. Figs. 12 and 13!. Our findings seem to
indicate that the finite value of the specific heat
c@Tc(a),L5`# is a dependent and decreases with increas-
ing a. However, in order to determine these values to a

FIG. 10. LY(T,L)/J as a function of tL1/n for a5p,
n50.6705,Tc52.65.

FIG. 11. The critical temperaturesTc(a) as a function ofa. The
solid line represents Eq.~22! with Tc(0)52.206 andg50.484.

FIG. 12. The specific heat for various lattice sizes as a function
of temperature ata50.

FIG. 13. The specific heat for various lattice sizes as a function
of temperature ata5p/2.
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sufficient accuracy, computations on much larger lattices
have to be performed, which require very long computation
times due to the broadening of the probability distribution
P(NCS).

V. SUMMARY

We have coupled the three-dimensionalx-y model to the
Chern-Simons term in the spirit of Wilczek and Zee,13 thus
endowing the vortices with a spina/(2p). We have inves-
tigated the influence of the Chern-Simons term on the critical
behavior. The geometrical interpretation of this term enabled
us to compute the Chern-Simons number for an arbitrary
spin configuration on the lattice. We computed the helicity
modulus and the specific heat onL3L3L lattices up to
L510 by means of a Monte Carlo simulation. Periodic
boundary conditions were applied in all directions. We used
the finite-size scaling properties of the helicity modulus to

estimate the critical temperatures and to check the influence
of the Chern-Simons term on the critical exponentn. Our
findings suggest that thex-y model coupled to the Chern-
Simons term following Wilcek and Zee13 belongs to thex-y
universality class, however, the critical temperature and the
finite bulk value of the specific heat at the critical tempera-
ture depend ona.
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