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The specific heat of the z-y model is studied on cubic lattices of sizes L x L x L and on lattices
L x Lx H with L > H (i.e., on lattices representing a film geometry) using the cluster Monte Carlo
method. Periodic boundary conditions were applied in all directions. In the cubic case we obtained
the ratio of the critical exponents a/v from the size dependence of the energy density at the critical
temperature 7). Using finite-size scaling theory, we find that while for both geometries our results
scale to universal functions, these functions differ for the different geometries. We compare our
findings to experimental results and results of renormalization-group caleulations.

I. INTRCDUCTION

Physical systems which exhibit a second-order phase
transition and are confined in a finite geometry (e.g., a
cubic or film geometry) are thought to be well described
by the finite-size scaling theory at temperatures close to
the critical temperature T).! This scaling theory states
that finite-size effects can be observed when the bulk cor-
relation length & becomes of the order of the finite extent
L of the system, e.g., in a cubic geometry the length of
the edges of the cube plays the role of L. For a physical
observable O this intuitive assumption can be cast into
the following formula:?

o@,L) L
sires = (@izs)  ®

where £(£, L = 00) is the correlation length for the infinite
size system, t is the reduced temperature, and f is a uni-
versal function. For example, the most singular behavior
of the correlation lenith close to the critical temperature
is given by £(t) = £5°|t|™¥. In this case using Eq. (1)
with O(t, L) = £(t, L) we obtain

E(t.L) = [t e (HLY™), (2)

where the prefactor éf,': has been absorbed in the defini-
tion of the universal function f¢(z).

A physical system, which has been widely used to
experimentally test the finite-size scaling theory, is lig-
uid #He since the superfluid density p, and the spe-
cific heat ¢ can be measured to a very high accuracy.
However, the experimental verification of the finite-size
scaling theory is somewhat controversial. Rhee, Gas-
parini, and Bishop measured the superfluid density of
very thick helium films® and showed that the data did
not follow the form (1) using a value of v reasonably
close to the expected value v = 0.67. Similarly, in early
measurements of the specific heat of *He in finite ge-
ometries very different critical exponents from the ex-
pected values were found? by straightforward application
of finite-size scaling theory. In order to clarify the situa-
tion renormalization-group calculations for the standard
Landau-Ginzburg functional in different geometries with
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Dirichlet boundary conditions have been undertaken.58
New specific-heat measurements® and also a reanalysis!®
of the old specific-heat data* show good agreement be-
tween the renormalization-group calculations reported in
Refs. 5~7 and those data. Furthermore new experiments
on liquid *He confined in a film geometry under micro-
gravity conditions are planned!! in order to determine
the finite-size scaling of the specific heat. Thus, it is de-
sirable to obtain reliable results for the specific heat in
finite-size helium systems by means of numerical investi-
gations.

In this paper we perform a numerical study of the
scaling behavior of the specific heat of *He in a cubic
(L x L x L size lattices) and in a film geometry (Lx Lx H
size lattices with L > H) at temperatures close to the
critical temperature 7. Since *He belongs to the uni-
versality class of the z-y model,’? we use this model to
compute the specific heat at temperatures near 7T using
the 1-cluster Monte Carlo method.'® The z-y model on
a lattice is defined as

H=-J> & &, (3)
(5.4)

where the summation is over all nearest neighbors, 8 =
(cos 8,sin ) is a two-component vector constrained to the
unit circle, and J sets the energy scale.

The critical exponents of the three-dimensional z-
y model have been determined by high-temperature
expansions!* and Monte Carlo simulations.!®7'% The im-
portance of vortex lines for the phase transition was in-
vestigated in Ref. 19. A renormalization-group approach
based on vortex lines2® derives the critical properties
of the three-dimensional z-y model from the interaction
of vortex lines. The anisotropic three-dimensional z-y
model (J, = J, # J,) has also been studied,?! and a
crossover from three-dimensional to two-dimensional be-
havior was found with respect to the ratio J,/J.. The
Villain model, which is in the same universality class as
the -y model, has been studied in a film geometry where
the correlation length in the disordered phase was used to
extract the thickness-dependent critical temperature.??
The authors of Ref. 23 computed the universal scaling
function of the superfluid density of helium confined in
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a film geometry using the z-y model and examined the
crossover properties from three to two dimeunsions of the
superfluid density. '

In this work we compute the specific heat ¢(T, L) of the
z-y model on various cubic lattices L X L x L. We deduce
its critical exponent a from the size dependence of the
energy density at the critical temperature, estimate the
bulk value ¢(T, 0), and check the scaling hypothesis for
the specific heat with respect to L. We compare the
resulting universal function to recent remormalization-
group calculations.2® The specific heat for a film geome-
try, i.e., for various L? x H lattices with L — oo, is also
computed and the scaling behavior of the specific heat
with respect to H is studied. We compare the univer-
sal scaling function for the film geometry directly to the
experimental results of Refs. 9.

The article is organized as follows. In the next section
we introduce the definition of the specific heat and the en-
ergy density and briefly discuss the Monte Carlo method.
Section III discusses the finite-size scaling properties of
the specific heat. In Sec. IV we deduce the critical ex-
ponents and check the scaling assumption of the specific
heat for the cubic geometry. Section V is devoted to
the film geometry, and the last section summarizes our
results.

II. DEFINITION OF THE PHYSICAL
QUANTITIES AND MONTE CARLO METHOD

‘We define the energy density of our model as follows:

1 — -

E=<e>=3—‘—f-<zsi'3j>, (4)
{&,3)

where V = L3 for the cubes and V = HL? for the film

geometry. The specific heat can be written as (kg = 1)

c=VE*((e?) — (e)*), (5)

where 8 = J/(ksT).
The thermal averages, denoted by the angular brack-
ets, are computed according to

(0) = 71 / ];Idei O[6] exp (—kBiT) : (6)

O[6] denotes the dependence of the physical observable
O on the configuration {6;}, and the partition function
Z is given by

-

Z = /];[d(),- exp (_ng) . (7)

The multidimensional integrals in the expressions (6) and
(7) are computed with Wolff’s 1-cluster algorithm Monte
Carlo method.’* We computed the specific heat at var-
ious temperatures on L® lattices for L = 20,30,40 and
on L2 x H lattices for L = 40,60,100 and H = 6,8, 10.

At the critical temperature the energy density and the
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specific heat were computed on L® lattices for L =
10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 80. Periodic boundary
conditions were applied in all directions. We carried out
of the order of 20000 thermalization steps and of the
order of 500000 measurements. The calculations were
performed on a heterogeneous environment of comput-
ers including Sun, IBM RS/6000, and DEC alpha AXP
workstations and a Cray-YMP.

III. FINITE-SIZE SCALING PROPERTIES OF
THE SPECIFIC HEAT

Let us first consider the z-y model in a cube whose
edges are of length L. In such a geometry the specific
heat starts feeling the finite size of the cube when the bulk
correlation length ¢ becomes comparable to the length L.
At temperatures close to the critical temperature T3 and
for.L — oo we can write?

e(t, L)

—_ 1/1/
o(t, ) G(tLY™"), (8)

where the reduced temperature t = T/T\ — 1, G is a
universal function, and v is the critical exponent of the
correlation length. In the limit L — oo and at a fixed
value of t we obtain G(+oo0) = 1. Now we leave L fixed
but carry out the limit ¢ — +0 assuming (£, o) o |t[™*
with a > 0. We obtain

. : —a 1/v V
t1—1>n:|30 e(t, L) o t1—1>n:%0 [t|”*G(ELY"), (9)
and the fact that ¢(0, L) is finite at ¢ = 0 implies that
a,-l—{»]:léo G(x) o |2|%, (10)
thus
¢(0,L) < L¥/”. (11)

Experiments on superfluid He (Refs. 24 and 25) indicate
that v = 0.6705, and via the hyperscaling relation o« =
2 — 3v = —0.0115 < 0, thus ¢(0, 00) is finite. In order to
write ¢(t, L) in a scaling form similar to (8), notice

c(t, 00) — (0, 00) o [t|7F, (12)

with a < 0. Since the scaling theory deals only with the
most “singular” terms of a physical quantity when the
critical point is approached, the following scaling form
suggests itself:

e(t, L) — ¢(0, o0)

— 1/v
c(t, 00) — ¢(0, 00) GEL™) (13)

or

c(t, L) = ¢(0, 00) + [t|~*g(tL"). (14)
Keeping ¢ fixed, we find lim,_, 4. g(z) = &, which is
finite. For fixed L and t — 4:0 we obtain the behavior of
Eq. (10) and

¢(0,L) = (0, 00) + ¢, L. | '(15)7
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After defining the scaling function g(z) = |z[">g(=) we
obtain

e(t, L) = ¢(0,00) + L¥/*§(tL/*). (16)
This enables us to reexpress the scaling form (13) as fol-
lows:
“e(t, L) — e(0,00)
¢(0,L) — ¢(0,00)
Note that Gr(0) = 1.
Let us finally derive the relationship between the scal-

ing function Gz, (tL1/¥) and the scaling function f; (¢tL'/*)
used in Refs. 5 and 6. This function is defined as follows:

c(t, L) — c(to, 00) = L*/¥ f; (L), (18)

GrL(tLY?). (17)

where to = (£ /L)/”, i.e., to is the reduced temperature
where the correlation length is equal to the system size
L. Using Eqgs. (15) and (17) we can write

e(t, L) — ¢(0,00) = ¢, L** G (tL*). (19)

In order to make Eq. (19) consistent with Eq. (10), we
have to require that if we keep ¢ fixed and take the limit
L2

Jlim_Gu(e) = gklel", (20)

where gZ is a constant. Thus, at L = oo Eq. (19) can
be written as

c(t, 00) - c(0,00) = Ezflt[""‘, (21)

where 51i = clgfo. Evaluating expression (21) at tg, solv-
ing for ¢(0,00) and inserting the result into Eq. (19)
yields

e(t, L) — elto, ) = L1 { Go (k1Y) — g4 (€3)~>/*} .

(22)

Comparing this expression and the definition for f;(x)
given by Eq. (18) we find

L) =a{Gi@ g} (@)

These scaling forms are valid for the film confining ge-
ometry also. In the case of a film geometry we need to
replace L by H in the scaling equations (13), (17), and
(23) because the relevant scale is H when L > H.

IV. THE CUBIC GEOMETRY

In this section we investigate the finite-size scaling be-
havior of the specific heat of the z-y model in the cubic
geometry L3. In Fig. 1 we show our data for the specific
heat. As a comparison we also plotted the bulk behavior
of the specific heat (solid line). The steps leading to this
curve are given below in this section.

In order to find the universal function Gr(z) we need

5.0 T L L - T

otL)

0.0 1 i 1 J - -
-0.5 -0.3 -0.1 0.1 0.3 0.5

10t

FIG. 1. The specific heat for various size lattices I as a
function of the reduced temperature. The solid lines rep-
resent L = oo deduced from our Monte Carlo calculation.
T, = 2.2017.

to know ¢(0,c0). This quantity can be found by calcu-
lating the specific heat at the critical temperature for
various lattice sizes I and fitting the data to the form
(15). We take T = 2.2017 as the critical temperature.!®
Table I contains the values for ¢{0,L) and for E(0,L).
Since the specific heat is very sensitive to fluctuations, it -
has a relatively large error, making it very difficult to ex-
tract the very small exponent o/v. Therefore we decided
to use another procedure to find the values of the criti-
cal exponents. A quantity which is closely related to the
specific heat is the energy density E. It is advantageous
to use the energy density data because of the small error
bars involved in its calculation. These error bars are two
orders of magnitude smaller than the error bars of the
specific heat. From the expression

oft, L) = ‘9———%;:’3); (24)

TABLE 1. The Monte Carlo resulis for the specific heat
¢(0, L) and the energy density E(0, L) at the critical temper-
ature T = 2.2017.

E(0.L)

L <(0,L)

10 1.9454(69) 1.95435(32)
15 2.180(11) 1.98078(22)
20 2.362(10) 1.99176(18)
25 2.465(13) 1.99709(21)
30 2.579(18) 2.000 59(13)
35 2.621(19) 2.002 57(15)
40 2.754(30) 2.004 64(28)
45 2.789(34) 2.005 22(13)
50 2.783(31) 2.006 18(10)
60 2.967(45) 2.007 12(10)
80 3.048(43) 2.00882(11)
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TABLE 1I. Fitted values of the parameters enterzng ex-
pression (26). @ is the goodness of the fit.

TABLE IIl. Fitted values of the parameters entering ex-
pression (15). a/v = —0.0258. @ is the goodness of the fit.

Data :

points Ey B, 1/v afv ¥ | Q
10 |2.0111(2)|-1.80(i5)| 1.479(40)|-0.029(20) |1.58|0.15
9 2.0110(4) | -1.81(38)| 1.487(81) | -0.0258(75) | 1.76| 0.12
8 2.0111(7) | -1.80(10)| 1.48(25) | -0.029(55) |1.92|0.10
7 2.011(2) |-1.8(37) | 1.48(76) |-0.029(88) |2.56|0.05

we obtain by integrating (16) up to a constant
E(t,L) = ¢(0, 00)T + Le~V/* Ty D(LYY), (25)
where dD(z)/dz = §(z). For t — 0 we obtain

E(0,L) = Eo + By L& V/>, (26)

The results of the fits of the energy density data to the
expression (26) are given in Table II. In the fits we have
subsequently excluded values of the energy density corre-
sponding to smaller and smaller lattices. Because of the
size of the error bars of the ratio o¢/v and 1/v we cannot
make a definite statement that a/v < 0 and 1/v < L.5.
The fitting parameters, however, become stable when the
energy density data obtained for lattice sizes L > 20 (nine
data points) are used for the fits. Despite the large error
bars, we always find a/v < 0 and 1/v < 1.5. The param-
eters for the fit including nine data points and shown in
Fig. 2 are

Eo = 2.0110 % 0.0004,

Ey = —1.81 +0.38,

1/v = 1.487 + 0.081, (27)
o/v = —0.0258 + 0.0075. (28)

Within error bars the hyperscaling assumption is fulfilled.

2.00

E(O,L)

1 -95 1 1 ) I
0.0 20.0 40.0 60.0 80.0

L

FIG. 2. The energy density FE(0,L) at the critical tem-
perature Th =

represents the fit to (26) (nine data points included).

2.2017 as a function of L. The solid curve

Data points| c(0,00) | ‘ ¢y l X | Q

0 21.33(50)|  -20.57(54)]  1.51|  0.15
9 20.45(66) -19.61(72) 1.12 0.35
8 ' 20.72(94)|  -19.9(10) 1.28|  0.26
7 20.2(13) -19.3(15) 1.47|  0.20
The experimental value for o/v is a/v = —0.0172,%* and
an earlier experiment gave a/v = —0.0225.2° Having de-

termined /v, we can turn to fitting the specific-heat
data to expression (15). We fixed the value of a/v to
the previously determined value a/v = —0.0258. Table
III contains the fitting results. If we exclude the data
corresponding to the two smallest lattices we obtain

¢(0,00) =20.45+0.66, (29)
¢y = —19.61 £0.72, (30)

and the fit is shown in Fig. 3.

In order to check the validity of the scaling form (17)
we plot [e(t, L) — ¢(0, oo)]/[c(() 00) —¢(0, L)] versus tL/¥
for different lattice sizes L® in Fig. 4. We used the values
for ¢(0,L) given in Table I.and ¢(0,c0) as determined
above [Eq. (29)]. As expected the data points for the
three lattices 20%, 303, and 402 collapse onto one univer-
sal curve Gz (tL'/¥) in the range —10 < tL1/* < 10.

It is interesting to repeat the fits described above
using the experimentally determined critical exponents
v = 0.6705 and o = —0.0115.2¢ The result of the fit
of the specific-heat data corresponding to lattices of size
L > 20 to the expression (15) is

¢(0,00) = 30.3 % 1.0, (31)
ey =—294+11. _(32)

30 r

26

c(0,L)

--1.8 . L . A B
0.0. 20.0 " 40.0 60.0 80.0

L

FIG. 3. The specific heat ¢(0, L) at the critical temperature

Ts = 2.2017 as a function of L. The solid curve represents
the fit to (15) (nine data points included). /v = —0.0258.



7532
-1.00 | & .
g " :
X -1.04 g 1
g %
o L=40 '””""% L
-1.08 | o L=30 % : :
©o L=20 ” E
YH®w
-1.12 N : - —
“10.0 50 0.0 5.0 10.0

x=tL"

FIG. 4. The scaling function —Gr(z) [cf. Eq. (17)] for the
cubic geometry. ¢(0,00) = 20.45, 1/v = 1.487, T, = 2.2017,
the values for ¢(0, L) are taken from Table I.

Figure 5 shows the scaling plot where v = 0.6705 and
(0, co) = 30.3. The data of the specific heat for the 20,
303, and 403 lattice collapse onto one universal curve.
We see, that the value of ¢(0, o) is strongly effected by
the value of the ratio o/v. A much wider range of lattice
sizes is necessary in order to determine these values more
accurately. However, the scaling property, i.e., the data
collapse onto one universal curve, is rather insensitive to
the precise value of the ratio o/ and thus to the precise
value of ¢(0,00). This is demonstrated in Figs. 4 and
5. Thus, for our lattice sizes the data collapse cannot
be used to determine the value of the critical exponents
more accurately. '

In Fig. 6 we compare the results of the renormalization-
group calculations of Ref. 26 (solid line) to the results of
our Monte Carlo simulation for the lattice with I = 48.
We computed the values for the specific heat on this
lattice from our scaling function Gr(z) (cf. Fig. 5).

-1.00 | ‘1& |

B

-Gy (x)
et

404 b ‘ . o
o L=40 ’ ’% )
o L=30
o L=20 %i ®
: ¢ @
-1.08 : . -
“10.0 5.0 0.0 5.0 100

x=tL"

FIG. 5. The scaling function —G(z) [cf. Eq. (17)] for the
cubic geometry. ¢(0,00) = 30.3, v = 0.6705, T = 2.2017, the
values for ¢(0, L) are taken from Table I.
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30 :

20 | 1
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10 b a (=48, MC 1

~— L=48, RG o B
0.0 L
-0.1 0.0 0.1

t

FIG. 6. Comparison of the results of this work (MC) and
the renormalization-group (RG) calculations of Ref. 26 {solid
line) for the specific on an L = 48 lattice.

The agreement between the renormalization-group cal-
culations and the Monte Carlo results is satisfactory.

We now compute the function fi(z) defined by Eq.
(23) for the z-y model. This function can be obtained
from Eq. (23) with v = 0.6705, ¢c; = —29.4, and £ =
0.498 from Ref. 16. We estimate the value for g} as
follows. Equation (20) implies that if we plot z*G(x)
versus z for large enough positive values of z the function
2z*Q (x) should approach the finite value gt.. We obtain
g% = 1.0378(5) and thus

fi(z) = ~29.4[GL(z) — 1.025]. (33)
This function is shown in Fig. 7. The solid line in Fig. 7

10 i
@D ®
00 | o E
3 o
-1.0 - RG E
a MC
™ gm
e
2.0 1

=15.0 5.0 5.0 T 150
C e e x=tL "

FIG. 7. The function fi(z) for the cubic geometry. The
solid line is the result of the renormalization-group (RG) cal-
culation of Ref. 26, the squares represent our Monte Carlo
{MC) simulation.
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represents the result of the renormalization-group calcu-
lation of Ref. 26 [the scaling function P.(z) given there
is related to fi(z) by the relation f(z) = Pc(z) + 19.7].
Also here the agreement between the renormalization-
group calculation and the Monte Carlo results is satis-
factory. We would like to note that the shape of the
function f;(z) is rather insensitive to the precise value of
a/v and thus to the precise value of ¢; (as was the scaling
property of the specific heat), i.e., the scaling function
Gr(z) given in Fig. 4 yields almost the same function
fi1(z) as shown in Fig. 7. Therefore the scaling function
f1(z) cannot be used to determine the critical exponents
more accurately. However, the function f;(z) lends itself
well to compare experimental results to the results of our
calculation because in both cases it is hard to determine
a and thus ¢; to a better accuracy.

In what follows we will determine the temperature de-
pendence of the bulk specific heat above and below T
using the experimentally determined values of v = 0.6705
(Ref. 24) and o = —0.0115 and thus the values for the
quantities ¢(0,00) and ¢; given by Egs. (31) and (32).
The knowledge of g, enables us to find the bulk behavior
of the specific heat above T\ as given by Eq. (21) where

é"l*' = 619;2 = —-30.5+1.1. (34)

We found that below T’ the asymptotic form (21) is only
valid for a narrow region near 7% (namely || < 0.02). In
Fig. 8 we show curves for the specific heat for lattice
sizes ranging between L = 48 and L = 240. We com-
puted these curves from our scaling function G(x) where
a = —0.0115. The solid line in Fig. 8 is the bulk curve.
We identified the bulk values of the specific heat by the
values of the specific heat for large enough size lattices
which collapse onto one curve, because at those tempera-
tures the specific heat does not feel the finite size of such
large systems (because the correlation length for those
temperatures is much smaller than the size of these lat-
tices). Using larger and larger lattice sizes we can reach

3.4

3.0

cftl)

2.6

2.2

t

FIG. 8. The specific heat for various lattice sizes L derived
from the scaling function Gr(z). The solid line represents
L = oo according to Eq. (21).

.02 -0.01 000
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temperatures closer and closer to T5. Very close to T
the bulk curve can be expressed by Eq. (21) giving

& = —29.225 + 0.025, (35)

where ¢(0,00) is taken from Eq. (31). In Fig. 9 the
bulk behavior of the specific heat is shown. The solid
lines represent. the results of the Monte Carlo calculation
reported in this work. The dashed lines are taken from
Ref. 26 which are a combination of the high-temperature
series expansion of Ferer et al. (cf. Refs. 14) and the
renormalization-group calculations of Ref. 26. We would
like to emphasize that expression (21) is only valid in the
interval —0.02 <t < 0. '
We can use the universal ratio
& (&)
- (36)
& (é0)
to compare our results to experimental results. The ex-
perimental value of £ is £; = 3.57 A where £&; is defined
from T'/Y(t) = &, |t|™” according to Refs. 28 and 29 (T
denotes the helicity modulus). Using the z-y model and
the method of Ref. 23 we have calculated the helicity
modulus for cubic lattices up to 40% and using finite-
size scaling for Y and the above definition of {5 we find
& = 1.21 in lattice spacing units and thus a = 2.95 A.
With £ = 0.498a from Ref. 16 we find & = 1.47 A (¢F
cannot be measured directly in the experiments). Since
now the ratio £ /£ is the same on the lattice and in the
experiments so has to be the ratio & /&7 . We have

27,28

& _ [ 1.058(4) from Ref. 30, 37)
&~ | 1.044(38) from this work.

The agreement is quite satisfactory though it would be
desirable to determine this ratio more accurately on the

5.0 T

-~ RGandHTE|
— MC

40 -

o(t,0)

0.0 - —L .
- =04 0.0 0.1

FIG. 9. The bulk specific heat as a function of the reduced
temperature. The solid lines represent the results of this work,
the dashed lines represent the results of high-temperature ex-
pansions and of Ref. 26.
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lattice, which requires larger lattices and probably longer
simulation times as were used in the calculations reported
here. We can also compare A* = a& with the experi-
mental results of Ref. 31 by expressing the specific heat
of the z-y model in physical units. This is accomplished
by the equation

_ Vmks J

s 3 C= 14.74K ol (38)

where V,,, is the molar volume of “He at saturated vapor
pressure at T, c is given by expression (5), and ¢, has
units of J(K mol)~!. Using @ = —0.0115 and the values
for & given by Eqgs. (34) and (35) we obtain

At =5.240.02, (39)
A~ = 4.954 £ 0.004, (40)

with A% in units of J(K mol)~!. The experimental re-
sults of Ref. 31 are

a = —0.009, (41)
At =5.82, , (42)
A~ = 5.504. (43)

Also here the agjreement is acceptable.

V. THE FILM GEOMETRY

The specific heat on L? x H lattices in the limit L — oo
should obey

oA o) = CHEE).

The value of ¢(0,00) is given either by (29) or (31) de-
pending on the value for v.

In order to apply the scaling form (44) we need to take
the limit L &+ co. However we find that the L dependence

25 T T T T
© 100x100x4
20 + © 60x60x4 i
0 40x40x4
=
T 15+ k
I
T
1o k
[}
0.5 Il ) L. 1 i
1.8 1.8 2.0 22 24 2.8

T

FIG. 10. The specific heat ¢(L, H,T) as a function of T for
a film geometry for H = 4 and different values of L.
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(o]
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FIG. 11. The scaling function ~Gg(z) [cf. Eq. (44)]
for the film geometry. ¢(0,00) = 20.45, a/v = —0.0258,

1/v = 1.487, T = 2.2017. The error bars have been omitted
for clarity.

of the specific-heat is very weak, already for I = 60 and
L = 100 for a fixed H the specific-heat data agree within
error bars, as demonstrated in Fig. 10. This weak I de- .
pendence of the specific heat is quite in contrast to the
very strong L dependence of the helicity modulus, whose
values had to be computed in the limit L — co at tem-
peratures close to the H-dependent critical temperature
T3P 23 We take the values of the specific heat computed
on 100? x H lattices for H = 6,8,10 and assume those
values to represent the case of infinite planar dimension.
In order to verify the expression (44), we plot —G g (z)
in Fig. 11 where the values for the parameters «, v,
c¢(0,00), and ¢; are taken from Egs. (27), (28), (29),
and (30). The data collapse onto one universal curve.
Instead if we use the experimentally found critical expo-
nents v = 0.6705 and o = —0.0115 and the values ¢(0, o)
and c; given by (31) and (32), respectively, to check the
validity of scaling we obtain also data collapse as shown

0095 | J
oH=10|
a H=8
o H=6
-1.00 | g
z
x
@
<&
0o
© a
-1.05 | © g
-1.10 L L — P L -
8.0 4.0 -2.0 0.0 2.0 4.0 8.0

X=tH‘Iv

.FIG. 12. The scaling function —Gg(z) [cf. Eq. (44)]
for the film geometry. ¢(0,00) = 30.3, /v = —0.0172,
v = 0.6705, Th = 2.2017. The error bars have been omit-
ted for clarity.
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FIG. 13. —Gg(z) for the film geometry (circles) FIG. 14. Comparison of the experimentally determined

and —Gr(z) for the cubic geometry (filled circles).
af/v = —0.0115, v = 0.6705, and ¢(0, c0) = 30.3.

in Fig. 12. The data points deviate from the scaling curve
for # < —1.5 because we reach temperatures in this re-
gion which are outside the critical region. If we included
data from much thicker films this deviation would occur
for smaller values of z.

Figure 13 compares the universal functions G (z) for
the cubic geometry and Gy (z) for the film geometry with
v = 0.6705 and o = —0.0115. The universal function
—G g (z) has a sharper peak at its maximum.

Finally in this section we would like to compute the
function fi(z) in physical units for the film geometry in
order to make a direct comparison with experiments. We
determined the lattice spacing in physical units @ and the
value for g2, in the previous section (g% is independent
of the geometry and the boundary conditions). Thus,
the function f;(z) in physical units (open circles) is de-
termined up to a comnstant prefactor in front of the argu-
ment & which is fixed by requiring that the maximum of
fi(zm) occurs at the same value of the argument z,, ‘as
the maximum of the experimentally determined function
fi(zm). This constant prefactor turns out to be 1 and
fi1(z) is displayed in Fig. 14. Also in this figure we plotted
the experimentally determined function f;(x) of Refs. 9
(fillled circles). The two functions are of the same order of
magnitude but do not agree (varying the value of the con-
stant prefactor does not improve the agreement). This
is not surprising because the periodic boundary condi-
tions only approximate the true physical boundary condi-
tions. Therefore we also plotted the function f;(z) (solid
line) obtained from a renormalization-group calculation
for the Landau-Ginzburg functional in a film geometry
with Dirichlet boundary conditions.’® The importance
of the correct physical boundary conditions is clear from
this discussion.

VI. SUMMARY

‘We have investigated the finite-size scaling properties

of the specific heat of the z-y model in a cubic geome-.

try L X L X I and in a film geometry L x L x H with

function fi(z) (filled circles) of Refs. 9, fi(z) obtained for
films with periodic boundary conditions (open circles), and
fi(z) for films with Dirichlet boundary conditions of Ref. 6.
f1(z) has the units J(K mol)~! and H is in A.

L > H. Periodic boundary conditions were applied in
all directions. For the cubic geometry we find strong evi- .
dence that the critical exponent « is negative, so the spe-
cific heat does not diverge at the critical temperature, in
qualitative agreement with experimental findings. How-
ever, we were not able to determine a very accurately,
we find o /v = —0.026(8), 1/v = 1.49(8), which is in rea-
sonable agreement with experiments. Our values for o
and v fulfill the hyperscaling relation. We confirmed the
scaling assumptions (17) for the cubic case and (44) for
the film geometry using a value of the critical exponent
v very close to the experimentally determined value.?4
We also used the experimentally determined values for
v and o to compute the scaling functions for the spe-
cific heat in the two geometries. Our results verify the
phenomenological finite-size scaling theory; thus, we be-
lieve that the failure to verify this scaling theory using
the experiments of Ref. 3 must be attributed to another
reason. We derived the bulk behavior of the specific heat
below and above the critical temperature and compared
these results to renormalization-group calculations and
high-temperature expansions. Good agreement between
the scaling function fi(z) [cf. Eq. (18)] for the cu-
bic geometry obtained from our Monte Carlo simulation
and renormalization-group calculations was found. For
the film geometry we compared fi{z) derived from our
Monte Carlo data to the experimentally determined func-
tion fi(z) and the renormalization-group result of Refs.
5 and 6. This comparison leads to the conclusion that
the boundary conditions determine the shape of the uni-
versal functions and have to be chosen properly in order
to find agreement with the experimental results.
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