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We bave studied the superfluid density p, on various size lattices in the geometry L x L x H
by numerical simulation of the z-y model using the cluster Monte Carlo method. Applying the
Kosterlitz-Thouless-Nelson renormalization-group equations for the superfluid density we have been
able to extrapolate to the L — oo limit for a given value of H. In the superfluid phase we find
that the superfluid density faithfully obeys the expected scaling law with H, using the experimental
value for the critical exponent v = 0.6705. For the sizes of film thickness studied here the critical
temperature T2P(H) is in agreement with the expected H dependence deduced from general scaling

ideas. . :

I. INTRODUCTION

Liquid *He is an ideal experimental testing ground for
the theory of phase transitions and the related finite-size
scaling (FSS) theory. Relevant physical quantities such
as the specific heat ¢ or the superfluid density p, can be
measured to a very high accuracy’™® and they can be
used to check the FSS theory (see, e.g., Ref. 6). This
theory was developed in order to account for the influ-
ence of the finite extent of systems which are confined
in a finite geometry (e.g., a film) and at temperatures
close to the critical temperature. The theory is based
on the scaling hypothesis and on the fact that finite-size
effects can be observed when the bulk correlation length
& becomes of the order of the relevant size of the system
(e.g., in a film the relevant size is the film thickness H).
More precisely, the finite-size scaling hypothesis states
that a dimensionless physical quantity (or the ratio of
two physical quantities of the same dimensions), suffi-
ciently close to the critical point, is a function only of
-the ratio H/¢. For a physical quantity O this simple but
nontrivial statement can be expressed as follows:”

o H
O(H = 00,9) ‘f(e(H=oo,t))’ (1)

where t is the reduced temperature and f is a univer-
sal function. So far the validity of this approach has
been confirmed by experiments on superfluid helium on
helium films of finite thickness? (the relevant size is the
thickness). However, recent measurements of the super-
fluid density by Rhee, Gasparini, and Bishop? of helium
films seem to be in contradiction to the F'SS theory.
The singular behavior in the thermodynamic functions
of liquid *He close to the superfluid transition can be un-
derstood in terms of a complex order parameter ()
which is the ensemble average of the helium-atom-boson
creation operator. This ensemble average is defined in-
side a volume of a size much greater than the inter-
atomic distance but much smaller than the temperature-
dependent coherence length. In order to describe the
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physics at longer length scales, which is important very
close to the critical point, we need to consider spatial fluc-
tuations of the order parameter. These fluctuations can
be taken into account by assigning a Landau-Ginzburg
free energy functional H (¢ (7)) to each configuration of
() and performing the sum of e~*/*27 over such con-
figurations. The power laws governing the long-distance
behavior of the correlation functions and the critical ex-
ponents associated with the singular behavior of the ther-
modynamic quantities close to the critical point are in-
sensitive to the precise functional form of #[+], and they
are the same for an entire class of such functionals. The
planar z-y model belongs to the class of such Landau-
Ginzburg free-energy functionals,® and thus can be used
to describe the fluctuations of the complex order param-
eter. In pseudospin notation the z-y model is expressed
as

H=-J)Y & 3, (2)
(i!j)

where the summation is over all nearest neighbors and
§ = (cos 8,sinf) is a two-component vector which is con-
strained to be on the unit circle. The angle 8 corresponds
to the phase of the order parameter (7).

In this paper we investigate the z-y model in a film
geometry, i.e., planar dimensions L with L — oo and a
finite thickness H. This study will allow us to examine
directly the validity of the FSS theory.

There has been analytical and numerical work on the
pure three-dimensional (3D) z-y model. Results of high-
temperature-series studies can be found in Ref. 9, Monte
Carlo simulations were reported in Refs. 10-13, and a
renormalization-group approach based on vortex lines
was reported in Ref. 14. In Ref. 15 the anisotropic 3D
z-y model (J, = Jy, # J,) was studied. A crossover from
3D to two-dimensional (2D) behavior was found with re-
spect to the ratio J,/J,. The Villain model, which is in
the same universality class as the z-y model, was stud-

ied in a film geometry in Ref. 16 where the correlation
length in the disordered phase was used to extract the
thickness-dependent critical temperature.
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In this paper we study the superfluid density or he-
licity modulus of the z-y model in a film geometry, i.e.,
on an L? x H lattice. In a film geometry this model
exhibiis a crossover from 3D to 2D behavior. In the tem-
perature range where the model behaves effectively two
dimensionally we are able to compute the values for the
helicity modulus in the I — oo limit using the Kosterlitz-
Thouless-Nelson renormalization-group equations. This
enables us to eliminate the I dependence completely and
thus to check scaling of the helicity modulus with re-
spect to the film thickness H. We also test further con-
sequences of the FSS theory which are described in the
next section. In Sec. III we show how the helicity mod-
ulus is computed in our model and briefly describe the
Monte Carlo method. Section IV discusses the L depen-
dence of the helicity modulus in the temperature range
where the model exhibits two-dimensional behavior. In
that section we also describe the extrapolation procedure
to the L = oo limit. In Sec. V we study the scaling of
the helicity modulus with respect to H and in Sec. VI we
investigate the H dependence of the critical temperature.
The last section summarizes our results.

II. X-Y MODEL AND FINITE-SIZE SCALING

The 3D z-y model shows an order-disorder phase tran-
sition. Above the bulk critical temperature T, the spin-
spin correlation function decays exponentially. The cor-
relation length characterizing this decay grows with the
temperature T' according to

€T) (T;AT*)—".

In the ordered phase the correlation function decays ac-
cording to a power law. There, the role of a relevant
finite length scale is played by the transverse correla-
tion length,'? £1. £p, up to a constant factor, is propor-
tional to the ratio T/T, where Y is the helicity modulus.
Fisher’s scaling hypothesis implies that

£2(T) o % o (TAT: T)—u. @

®3)

If the model is considered in a film geometry, i.e., in-
finite planar dimensions and a finite thickness H, inter-
esting crossover phenomena take place. In Fig. 1 we
show an intuitive picture of the behavior of our model
with respect to the temperature for a fixed thickness H.
Let us start at a temperature far below T where &7 is
much smaller than the thickness H. At these tempera-
tures the model behaves as a true 3D system. If we raise
the temperature in order to approach closer to T from
below, the correlation length {1 grows according to (4)
until we reach the crossover temperature T < T where
it becomes comparable to H. Above this temperature
the behavior of the system crosses over from 3D to 2D
behavior. A further increase in temperature makes the
2D behavior of the system more and more pronounced.
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FIG. 1. The behavior of the 3D z-y model in a film geom-
etry for a fixed thickness H with respect to the temperature.

The system starts “feeling” a 2D critical temperature
T2D. Very close to T2P, i.e., in the purely 2D regime,
we have to apply the Kosterlitz-Thouless-Nelson theory
in order to explain the behavior of the system. This im-
plies that in this regime the correlation length &7 does
not depend on T according to Eq. (4). Instead, the
dimensionless ratio K = T'/(TH) satisfies the following
renormalization-group equations:'® -

dl‘% = 4r2 (L, T), (5)
dy_(é;_i”_) = 2 — =K~1(, T)]y(l, T). (6)

Iny is the chemical potential to create a single vortex,
and e! denotes the size of the core radius of a vortex. In
the limit [ = co—i.e., all vortices have been integrated
out—and T — T2P one finds'®

T 7 \/?

where b is a constant. K (I = oo, T) is infinite above T27;
i.e., K(l = o) exhibits a universal jump at T2°. Above
T2D but still in the purely 2D region, the correlation
length grows with T" according to the Kosterlitz-Thouless
theory, i.e.,

&r(T) xexpB/(T — T,_.ZD)l/z, (8)

A further increase in temperature results in reaching an-
other crossover temperature T.t, where the correlation
length &7 is comparable to the thickness H. At higher
temperatures the model exhibits pure 3D behavior again.
From this intuitive picture we deduce the following in-
equality for the crossover temperatures T2P and T):

T, <TP < T\ < T} (9)

Within the F'SS theory the behavior of our model in
the crossover region at temperatures T' < T, can be de-
scribed by a universal scaling function ® which depends
only on the ratio H/&7(T), provided H is large enough.
According to Ambegackar et al.'® we have
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K(T,H) = T—(T%ﬁ= BEHY), (10)

where t = (Tx —T)/Tx. In the mguﬁent of ® we have
replaced £r(T) by its bulk scaling expression (4).

Interesting conclusions can be drawn if we extend the

validity of Eq. (10) up to T2P.!? Since K (T, H) drops
discontinuously to zero at T?P, the scaling function @ has
to be discontinuous too. From the Kosterlitz-Thouless-
Nelson theory we have to require

&(z < z.) = o0,

B(z.) = g (11)

z. is a dimensionless number. From here we immedi-
ately derive an expression for the H dependence of 2D,
namely,®

T2D(H) = Ty (1 - H’ijy) : (12)

Equations (7) and (10) have to be reconciled in the two-
dimensional region. This enables us to deduce the form
of the universal function ®(z) for values of z close to z..
In order to do that we replace T2 by T} in Eq. (7) by
inverting Eq. (12). Keeping only terms linear in H~1/¥
we obtain

b
K(T,H) = 725 [1 ~ i (tHl/" + taz,

2 \ 12
xc
—2.— 1 /u) } (13)

For T close to TP (i.e., t close to |1 — T?P /Ty |) we have

Te

-7

- (14)
which yields
T b 1/ i/2

K(T,H) can only be a universal function of tH/” if b
scales according to

b(H) = AHY?; (16)
i.e., we obtain
3(=) = 51— Alz =), ()

A is a constant which will be found numerically (see later
in the text). The form (17) of the universal function is
valid at temperatures very close to T2, since Eq. (7) is
only an approximation itself. Petschek?? uses a different
argument in order to derive (16).
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III. HELICITY MODULUS
AND MONTE CARLO METHOD

The helicity modulus YT was introduced by Fisher, Bar-
ber, and Jasnow.2! It is related to the superfluid density
via?!

m

po(T) = (%—)ZT(T). (18)

For the 3D z-y model on a cubic lattice the definition of
the helicity modulus is:1%:22

T 1 g, - &

7’* = 7 <Z cos(6; — 0;)(é, - 6:'j)2>
(i7j>

2

—‘é/- < Z sin(0,- - aj)gu . gij > ’ (19)
(4.4}

where V is the volume of the lattice, €, is the unit vector
in the corresponding bond direction, and €;; is the vector
connecting the lattice sites ¢ and j. In the following we
will omit the vector index since we will always refer to
the z component of the helicity modulus. Note that, be-
cause of isotropy, we have Y, = T,. The above thermal
averages denoted by the angular brackets are computed
according to

©)=z1 / I 46: 0161 exp (7). (20)

O[f] denotes the dependence of the physical observable
O on the configuration {#;}, and the partition function
Z is given by

Z =/Hd0,- exp(—fH), (21)

where 8 = 1/kgT. The expectation values (20) are com-
puted by means of the Monte Carlo method using Wolff’s
one-cluster algorithm.23 This algorithm successfully tack-
les the problem of critical slowing down.?* We computed
the helicity modulus on lattices of different sizes L% x H,
where H = 3,4,6,8,10,12 and L = 40,60, 100 for each
thickness. For some thicknesses we used L = 25,50, 100.
Periodic boundary conditions were applied in all direc-
tions. We carried out of the order of 10 000.thermaliza-
tion steps and of the order of 500 000 measurements. The
calculations were performed on a heterogenous environ-
ment of workstations which include Sun, IBM RS/6000,
and DEC alpha AXP workstations and on the Cray-
YMP.

IV. TWO-DIMENSIONAL REGION

Here we consider the temperature range T, < T <
T, where the 3D bulk correlation length exceeds the _
thickness of the film. This temperature range contains
both the H-dependent 2D critical temperature 720 as



51 CROSSOVER FROM TWO- TO THREE-DIMENSIONAL . ..

well as the 3D bulk critical temperature T%. For fixed
H and for temperatures close enough to TP the system
behaves as a 2D z-y model; thus, our method of anal-
ysis applied to the 2D z-y model®® can be used here as
well. In Ref. 25 we investigated the dimensionless quan-
tity ¥/J; in the 3D system the helicity modulus acquires
the additional unit of a length™', and thus the proper
quantity to consider is the ratio Y (L, H,T)H/J.
In the following sections we always leave H fixed..

A. Finite-size scaling with respect
to L above T2P(H)

In Fig. 2 we show the data for Y(L, H,T)a/J for films
of fixed thickness H = 6 for various sizes L and a denotes
the lattice spacing. Asin Ref. 25 we can obtain a function
T = F(L) via the § function such that Y(L', H, F(L')) =
Y(L,H,F(L)) = YTp, where T, is a physical value of the
helicity modulus. We define the 8 function as

. dT
B(T) = — lim (@)’ (22)

Since we expect our model to behave effectively two di-
mensionally, we use the ansatz

BIT > To(H)] = o(H)[T — T2° (H)]'+,
BIT < T-(H)] = 0, (23)

which is suggested by the Kosterlitz-Thouless theory. In-
serting the ansatz (23) into (22) and integrating yields

B
Y A A (24
7= TP 9
where B = 1/(vc) and z is a constant of integration,

which depends on the value of T used to define the
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FIG. 2. The helicity modulus Y (L, H,T) as a function of
T for various lattices L? x 6. :
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TABLE 1. Fitted values of the parameters c¢(H) and
T2P(H) of the B function (23) for the used lattice pairs for
different thicknesses H; v = 0.5. x* and the goodness of the
fit Q are also given.

H Ly,Ls | c T2 (H) x? Q
3 50,100 0.946(29) 1.7710(23) 0.57 0.92
4 60,100 0.955(41) 1.9039(26) 0.66 0.92
6 50,100 1.383(58) 2.0387(17) 0.55 0.96
8 60,100 1.10(10) 2.0813(31) 0.50 0.98
i0|. 60,100

1.66(18) 2.1182(30)| 0.29| 1.0

scaling transformation. As in the pure 2D case we ex-
pect all values of Y(L,H,T)/J for fixed H to collapse
on the same universal curve if Y/J is considered as a
function of z. As was explained in Ref. 25 this also
means that the correlation length £ grows according to
&(T) o exp B/[T — T.(H)]” because Y/J for fixed H
should be a function of L/&(T) only, and thus, also a
function of z = In[L/&(T)]. The 8 function can be found
numerically using methods described in Refs. 25-28.
The @ function given by Eq. (23) expresses the fact
that below the critical temperature T2P(H) the cor-
relation length &(T) becomes infinite; thus the ratio
L/€¢(T) venishes and the physical quantities are inde-
pendent of the planar dimensions L of the lattice. For
the helicity modulus in particular this means that the
values for Y(L,H,T)a/J for a fixed H computed on
different lattices L x L x H should collapse onto one
curve below the critical temperature T2°(H). How-
ever, this is not quite true.?® A close inspection of the
curves in Fig. 2 reveals that the pseudocritical tem-
perature T2P(6) where the two curves Y(25,6,T)a/J
and Y (50,6,T)a/J meet is approximately 2.0, whereas

0.040

0.030

0.020

0.010

0.000

-0.010; . -
2.00 204 2.08 2.12

FIG. 3. The 8 function obtained from the 100° x 6 and
50% x 6 lattices.
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FIG. 4. The helicity modulus T ‘as a function of z for the
1002 x 6 and 50% x 6 lattices. '

T?D(6) = 2.0387(17) (cf. Table I) is derived from
the data for Y(50,6,T)a/J and T(100,6,T)a/J; ie.,
the estimate for T?P(H) grows with L.
Kosterlitz-Thouless-Nelson renormalization-group equa-
tions (5) and (6) at the critical critical temperature and
for large | = In L gives a logarithmic dependence of the
critical temperature T2P on L.?® Thus the S-function
method can only yield a lower bound for the critical tem-
perature T2P (H). Because of this reason, we use the two
largest lattices only to numerically derive the 8 function
for each different thickness H. In the next section we
will describe and exploit a method that circumvents the
difficulties described above.

. Having extracted data points for the § function we fit
them to the functional form (23) setting » = 0.5. The
results of our fits are given in Table I. Figure 3 shows the
B function and Fig. 4 demonstrates that the values for
the quantity Ya/J for the 50% x 6 and 100* x 6 lattices
collapse onto one curve.

B. Finite-size scaling with respect
to L below T2P(H)

Since our calculation was performed on finite lattices
of size I? x H, we wish to reach the L — co limit and
to obtain T2P(H) and b(H) [see Eq. (7)]. In order to
do that we need to know the leading finite-L corrections
to the dimensionless ratio K = T/(TH). As the system
behaves effectively two dimensionally we can apply the
formulas derived in Ref. 25 for the ratio K. This ratio
satisfies the renormalization-group equations (5) and (6);
thus solving these equations for a finite scale [ =InL in
the limit L — oo and close to the critical temperature
T2P(H) yields?®
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Solving the -

TTR(L 5 00, T < TL(H))

o 9l — 2K (T)/x
. : oo(T) (1 + 1 I_ 5L2[1\'/K<Eo (%—L) » (25)
K(L,T,(H)) = g(1 - Ei_/f?c‘) (26)

where Ko (T) = K{L — 00, T) and ¢ and & are constants
of integration.

At a fixed thickness H below T2P(H) we can use the
expression (25) to extrapolate our values for K(L,T)
at finite L to the values K (T) at infinite L. In
order to do that we fit our calculated values for
K(L,T) to the functional form (25). In order to con-
vince ourselves that the values for K(L,T) satisfy Eq.
(25) and thus of the justification of the extrapolation
method, we computed K(L,2.0202) for H 6 at
L = 20,25,30,40,50,60,80,100,120 and fitted expres-
sion (25) to the obtained values of K (L, 2.0202). The fit
is shown in Fig. 5. From the fit we conclude that the data
for K (L,2.0202) follow the functional form (25). Thus we
can apply the extrapolation procedure described above.
Furthermore, since the data for K (L, T) satisfy Eq. (25),
we will restrict ourselves to computing K (L, T) at a given
thickness for only three planar lattice extensions L as the
functional form (25) contains two parameters which can
be determined by a fit to at least three data points. Table
II contains our fitting results.

The extrapolated values for K, (T) at a fixed H should
behave as'®

Koo|T — TZP (H)]

g [1 — b(H) (1

1.15 i
I 114} .
£
b o]
<
Z
= 113 -

T=2.0202
112 8
1.11 _— ok ol A 1 1
0.0 20.0 40.0 60.0 80.0 1000 120.0 140.0
L

-FIG. 5. T/[Y(L, H,T)H] as a function of L at T = 2.0202
and H = 6. The solid curve is the fit to (25).
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FIG. 6. T/[Y(H,T)H] at L = oo and H = 6 as a function
of T. The solid curve is the fit to (27).

TABLE II. Fitted values of the parameters & and
Ko (H,T) of the expression (25) for various temperatures T
and different thicknesses H.

H T é K.(H,T)
3 1.7699 1.061(33) 1.3363(14)
1.7544 0.838(55) 1.2691(13)
1.7391 0.698(30) 1.2150(4)
4 1.9048 0.663(44) 1.2834(20)
1.8868 0.428(66) 1.1968(20)
1.8692 0.327(75) 1.1294(9)
6 2.0492 0.912(7) 1.4842(76)
2.0483 0.862(6) 1.4555(82)
2.0408 0.566(9) 1.3296(36)
2.0346 0.396(37) 11.268(21)
2.0284 0.324(32) 1.2148(33)
2.0243 0.268(12) 1.1832(29)
2.0202 0.217(5) 1.1557(8)
2.0161 0.179(12) 1.1297(26)
8 2.0964 0.433(10) 1.338(12)
2.0899 0.241(26) 1.2352(52)
2.0881 0.217(33) 1.2104(63)
2.0877 0.205(26) 1.2054(52)
2.0872 0.198(33) 1.1999(67)
10 2.1277 0.518(21) 1.404(12)
2.1266 0.436(14) 1.359(15)
2.12653 0.432(14) 1.358(15)
2.12648 0.429(14) 1.356(14)
2.12544 0.356(17) 1.318(13)
2.12540 0.353(17) 1.317(18)
2.12535 0.351(16) 1.317(12) -
12 2.1459 0.596(19) 1.4340(83)
2.1455 0.516(21) 1.407(11)
2.1450 0.421(22) 1.387(17)
2.1445 0.365(24) 1.364(25)
2.1441 0.317(19) 1.340(37)
2.1436 0.315(11) 1.330(10)
2.1432 0.281(9) 1.3109(81)
2.1427 0.251(10) 1.2962(90)
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TABLE III. Fitted values of the parameters b(H) and
TZD(H) of the expression (27) for different thicknesses H.
x> and the goodness of the fit Q are also given.

H b(H) TP (H) x* Q

3 1.3005(61) 1.7935(5) 0.009 0.92°
4 1.5701(94) 1.9310(6) 0.15 0.70
6 2.1672(82) 2.0507(2) 0.48 0.82
8 2.78(10) 2.1023(10) 0.03 0.99
10 3.73(28) 2.1294(5) 0.006 1.0
12 3.91(14) 0.02 1.0

2.1470(2)

where we introduced the expected H dependence of the
parameters b and T2P. At a fixed H both parameters can
be determined by a fit of our results for Koo (T') to the
functional form (27). The results of our fits are presented
in Table III. In Fig. 6 the fit to the data for Ko (T, H)
at H = 6 is shown. This fit confirms the validity of Eq.
(27). Since the functional form (27) contains two param-
eters, a fit to three data points gives already an estimate
of these parameters. For the films of thickness H = 3,4
we restricted ourselves to obtaining values for Koo (T, H)
at only three different temperatures in the temperature
range where the system exhibits two-dimensional behav-

-ior. T - : e

Note that the H dependence of the ratio K is contained

in the H dependence of the critical temperature T2° and
the constant b. These two parameters are the only pa-
rameters which are free to depend on the film thickness
if we request the form of Egs. (25), (26), and (27) to be
applicable to our case of a film geometry.
We would like to mention one difficulty in extracting
the infinite L results Ko (7") and finding the parame-
ters T2P(H) and b(H). In our study of the pure 2D z-y
model?® we found that formulas (25) and (27) are valid
in a narrow interval below T'2P; in particular the expres-
sion (27) is a good approximation for temperatures in the
region ~ 0.9T2P < T < T2P. For films of finite thick-
ness H we have the additional problem of a crossover
between 3D and 2D behavior, which makes the region of
validity of expression (27) even smaller. Thus, one has
to be careful in choosing the correct temperature range
for the extrapolation procedure.

V. SCALING OF T/(YH) WITH RESPECT TO H

This section is concerned with the scaling relation (10).
In order to check the validity of the scaling form (10) we
plot first T/(YH) versus tH'/¥ using the experimental

.. value of Goldner and Ahlers v = 0.6705 (Ref. 29) and

the result of Ref. 13, T, = 2.2017. This is done in Fig.
7. In the plot we only use temperatures below T2P (H).
If the scaling behavior (10) is valid, all our data points
should lie on one universal curve. This is not the case
for the films of thickness H = 3,4. For the other films
scaling seems valid in the interval 1.0 < tH Vv < 24.
All the represented data have lost their L dependence
within error bars. Scaling is confirmed by Fig. 8 which
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FIG. 7. T/[Y(H,T)H] as a function of tH*"; v = 0.6705.
Only even number thicknesses are displayed.

shows the same plot as Fig. 7, but only the data for
the thicknesses H = 6,8,10,12 are displayed. The data
points collapse onto one universal curve in the specified
interval. The films with thickness H = 3,4 are too thin
in order to exhibit the scaling behavior (10).

We would like to compare our findings to the exper-
imental results for the superfluid density of very thick
films by Rhee, Gasparini, and Bishop (RGB).2 In our
language they plot TH versus tH'/* and find that their
data do not collapse for the expected value of v. RGB
demonstrated the lack of scaling of their data by col-
lapsing them onto one universal curve using a different
value of v [v = 1.14(2)]. Since we confirm scaling for the
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FIG. 8. T/[Y(H,T)H] as a function of tH/*; v = 0.6705.
The solid curve is expression (17) with the parameters (28).
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“ratio K (T, H) in our simulation, the lack of scaling of

the experimental data is not due to a breakdown of the

. phenomenological scaling theory. Note that our results

have been obtained with periodic boundary conditions.
We are in the process of repeating the calculation using
Dirichlet boundary conditions which we believe represent
the experimental situation more closely. From these cal-
culations we expect to gain some insight as to why RGB’s
data do not scale. .

Since the scaling function ®(z) is known for temper-
atures which correspond to values of x close to z., we
can actually find the constants A and z. in expression
(17). For this purpose we plot Ko, (H,T) given in Table
II versus tH'/¥ with the values for 7' and v as above for
the four thickest films and fit the resulting 28 data points
to the form (17). We obtain

A =0.59540.002,
€ = 0.9965 = 0.0009. (28)

The fitted curve is the solid line in Fig. 8. The universal
function (17) with the parameters (28) describes the col-
lapsed data rather well in the interval 1.0 < tH/» < 1.3.
Since T/Y(T') x &7 (T), we would like to point out that
®(1.3) ~ 1, i.e., & ~ H. This agrees with the general
picture that the 2D behavior sets in when the correlation
length exceeds the film thickness.

VI. H DEPENDENCE OF FITTING
PARAMETERS

In this section we would like to examine the H depen-
dence of T2P and b.

The critical temperatures 72° (H) and the parameters
b(H) should follow Eq. (12) and Eq. (16), respectively.
Since we have determined the numerical values of the pa-

.-2.20 — : —

- ;4‘2.00 R R : N 1
5.0 7.0 . 9.0 11.0 13.0

H

FIG. 9. T?P(H) as a function of H. The solid line repre-
sents (29).
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FIG. 10. Inb(H) as a function of In H. The solid curve
represents (30).

rameters z. and A [cf. Eq. (28)] in the previous section,
we can readily check if the data for T2° (H) and b(H) are
consistent with the functions

0.9965
2D —
T2P(H) = 2.2017 (1.0 - m) , (29)
and
b(H) = 0.595 H°-5/0-6705 (30)

In Fig. 9 we plotted the function (29) and the values
for the critical temperatures 7'2°(H) for the films which
exhibit scaling. Figure 10 shows the curve (30) and the
values for b(H). The obtained data for T2P(H) agree
well with the functional form (29). The agreement of the
values for b(H) with the expected curve (30) is not as
good as for the values of the critical temperature. How-
ever, scaling of the quantity T/Y (T, H) indicates indi-
rectly that b(H) behaves according to Eq. (16). The
fitting parameter b(H) has a much larger error bar than
the critical temperature T2° (H) (cf. Table III). There-
fore more data points in the two-dimensional region than
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we used are necessary in order to determine b(H) more
accurately. We would like to emphasize here that it was
not_our objective to determine b(H) to a certain accu-
racy; the main goal of this work was to confirm scaling
of the helicity modulus with respect to the film thickness
H.

In summary we can state that our results for the crit-
ical temperatures T2P(H) are in agreement with the ex-
pected H dependence, which is deduced from general
scaling ideas. The values for the parameter b(H) are
consistent with the behavior (16). ‘

VII. SUMMARY

“"We have investigated the finite-size scaling properties
of the superfluid density of a superfluid with respect to
the film thickness. This was done by means of a Monte
Carlo simulation of the z-y model in a L x L x H geometry
with periodic boundary conditions in all directions. We
extrapolated the values of the superfluid density to the
L — oo limit in the critical region where the model is ef-
fectively two dimensional using the Kosterlitz-Thouless-
Nelson renormalization-group equations (5) and (6). The
test of the scaling expression (10) revealed that scaling
for the quantity T/Y (T, H) is fulfilled; i.e., the numerj-
cal results for this ratio collapse onto one universal curve
for sizes of film thickness H = 6,8,10,12 used in our
Monte Carlo simulation. Furthermore, we derived an an-
alytic expression for the universal curve, which is valid
for temperatures close to the critical temperatures of each
film. Using the expression (7) we were able to extract the
critical temperatures T?P(H) and the parameters b(H)
entering Eq. (27). The H dependence of the critical tem-
perature agrees with the expected behavior (12) deduced
from general scaling arguments. The values for b(H) are
consistent with the expected behavior (16). The scaling
property of the quantity 7/Y (T, H) demonstrates indi-
rectly the validity of the expected H dependence of b(H).

ACKNOWLEDGMENT

This work was supported by the National Aeronau-
tics and Space Administration under Grant No. NAGW-
3326.

! D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727
(1978).

2J. Maps and R. B. Hallock, Phys. Rev. Lett. 47, 1533
(1981).

31. Rhee, F. M. Gasparini, and D. J. Bishop, Phys. Rev.
Lett. 63, 410 (1989).

4 D. Finotello, Y. Y. Yu, and F. M. Gasparini, Phys. Rev. B
41, 10994 (1990).

5Y.Y. Yu, D. Finotello, and F. M. Gasparini, Phys. Rev. B
39, 6519 (1989). :

8 M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516
(1972); M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974); V.

Privman, Finite Size Scaling and Numerical Simulation of
Statistical Systems (World Scientific, Singapore, 1990).

" E. Brezin, J. Phys. (Paris) 43, 15 (1982).

8 H. Kleinert, Gauge Fields in Condensed Matter (World Sci-
entific, Singapore, 1989).

° P, Butera, M. Comi, and A. J. Guttmann, Phys. Rev. B
48, 13987 (1993); R. G. Bowers and G. S. Joyce, Phys.
Rev. Lett. 19, 630 (1967); M. Ferer, M. A. Moore, and M.
Wortis, Phys. Rev. B 8, 5205 (1973).

10y _H. Li and S. Teitel, Phys. Rev. B 40, 9122 (1989).

' G. Kohring, R. E. Shrock, and P. Wills, Phys. Rev. Lett.
57, 1358 (1986); A. P. Gottlob, M. Hasenbusch, and S.



11720

Meyer, Nucl. Phys. B (Proc. Suppl.) 30, 838 (1993).

12 M. Hasenbusch and S. Meyer, Phys. Lett. B 241, 238
(1990).

13 W. Janke, Phys. Lett. A 148, 306 (1992).

1% G. A. Williams, Phys. Rev. Lett. 59, 1926 (1987); S. R.
Shenoy, Phys. Rev. B 40, 5056 (1989).

'® 8. T. Chui and M. R. Giri, Phys. Lett. A 128, 49 (1988);
W. Janke and T. Matsui, Phys. Rev. B 42, 10673 (1990).

18 W. Janke and K. Nather, Phys. Rev. B 48, 15807 (1993).

17 P. C. Hohenberg, A. Aharony, B. I. Halperin, and E. D.
Siggia, Phys. Rev. B 13, 2986 (1976).

' D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39,
1201 (1977).

12 V. Ambegackar, B. I. Halperin, D. R. Nelson, and E. D.

Siggia, Phys. Rev. B 21, 1806 (1980).

NORBERT SCHULTKA AND EFSTRATIOS MANOUSAKIS 51

20 R. G. Petschek, Phys. Rev. Lett. 57, 501 (1986).

2! M. E. Fisher, M. N. Barber, and D. Jasnov, Phys. Rev. B
16, 2032 (1977).

?23. Teitel and C. Jayaprakash, Phys. Rev. B 27, 598 (1983).

33 U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

24 U. Wolff, Nucl. Phys. B322, 759 (1989); Nucl. Phys. B
(Proc. Suppl.) 17, 93 (1990).

25 N. Schultka and E. Manousakis, Phys. Rev. B 49, 129071
(1994).

26 P. Harten and P. Suranyi, Nucl. Phys. B265 [FS15], 615
(1989).

2T P. Hasenfratz (unpublished).

28 E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

2 L. S. Goldner and G. Ahlers, Phys. Rev. B 45, 13129
(1992).



