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We investigate numerically the ground state of two holes with dx2—y2 symmetry in the two-

dimensional ¢-J model, on lattices of significantly larger sizes than the ones studied so far. The Green’s-
function Monte Carlo method, in conjunction with suitable initial states and guidance functions, is used
to estimate the ground-state energy of one and two holes, as well as to compute the two-hole distribution
function. Our results show a significant decrease of the two-hole binding energy as the size of the lattice
is increased from 4X4. A critical value J,~0.27¢ is found such that d-wave hole binding no longer

occurs for J <J,.

I. INTRODUCTION

The problem of two mobile holes in the two-
dimensional (2D) ¢-J model' has elicited significant atten-
tion for its possible relevance to superconductivity in the
cuprous oxides. The 2D ¢-J model attempts to describe
mobile holes in a 2D quantum antiferromagnet by adding
a simple nearest-neighbor hole-hopping term to the spin-
+ antiferromagnetic Heisenberg model (AFHM):

A=—1 3 @la,+H.c)+T 3 (5,8,—i8,8), (1)
{ij)s (i

where a,{ =’c’,~’§(1——ﬁ,~ —sh ’c‘,-l being the creation operator
for an electron with spin projection s at lattice site i, and
where ;=3 ¢, ¢, is a number operator; 6}; creates an
electron only on an empty site, thus avoiding double oc-
cupancy. 8; is the spin operator associated with site i and
is defined as 8; =43 ;4,0 oCip Where o is a vector of
Pauli matrices. We consider a square lattice of N=L XL
‘sites with periodic boundary conditions. Several analyti-
cal approaches have been employed to study the Hamil-
tonian (1), leading to important theoretical predictions
mainly regarding the physics of a single hole.? Hole pair-
ing has been investigated mostly numerically, both in the
¢t-J model’"* and in the related strong-coupling limit of
the Hubbard model,’ by means of exact diagonalization
on lattices of small size, such as 4 X4. These studies have
yielded some indications that the formation of a bound
state of two holes may be energetically favorable within
certain ranges of the parameters of the models. However,
there are reasons to suspect that the relatively small size
of the lattices studied may not afford a reliable prediction
of the physics of the infinite system. Therefore the nu-
merical investigation must be extended to lattices of
significantly larger sizes than the ones accessible to exact
diagonalization, which is limited by computer memory
constraints. Monte Carlo techniques, with their relative-
ly modest memory requirements, are a valid computa-
tional alternative; in particular, the Green’s-function
Monte Carlo (GFMC) method® has been successfully
used to compute ground-state expectation values for the
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no-hole case of the Hamiltonian (1), i.e., the spin-}
AFHM.” This method consists of projecting out the
ground state of a given Hamiltonian from a starting trial
state by acting iteratively with a suitable projection
operator. Its application to the t-J model in the case of
mobile holes is complicated by the presence of the well-
known “minus” sign problem, which affects Monte Carlo
simulations of systems with fermionic character.® Be-
cause of increasingly larger statistical fluctuations, it is
usually impossible to iterate the algorithm until conver-
gence to the ground state is observed.

However, as we have recently shown for the case of a
single hole,® such complications can be overcome if a
sufficiently accurate initial trial state and a suitable gui-
dance function are used. In that case, convergence to the
ground state can be actually observed before the statisti-
cal fluctuations become too large and accurate ground-
state estimates can be obtained by performing a transient
estimation.

In this paper we extend our implementation of the
GFMC method to carry out a numerical study of the
ground state of two mobile holes in the Hamiltonian (1)
on lattices of significantly larger sizes than the ones stud-
ied so far. We investigate the binding of two holes as a
function of the parameter J /¢ of the model by computing
the ground-state two-hole binding energy A=08E,
—28E,, where 8E,,=E, —E,, E,; being the ground-
state energy of the Hamiltonian (1) with M holes. We
gain further insight into the occurrence of binding by
studying the ground-state two-hole distribution function.

Let us begin by reviewing what is known about the
physics of the 2D z-J Hamiltonian in the presence of two
holes. In the large-J/t limit, two holes in the ground
state will reside on nearest-neighboring sites, as this
configuration features the least number of broken antifer-
romagnetic bonds; this was observed in the static (¢t =0)
limit by exact diagonalization on a 4 X4 lattice.” As a re-
sult of the same mechanism, if more than two holes are
present, they will aggregate in a single cluster (phase sep-
aration). Monte Carlo simulations for two and four holes
in the static limit!” and for relatively large values of J /¢
(J/t>5) (Ref. 11) have confirmed these intuitive predic-
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tions. It should be noted that in this limit the ‘‘sign”
problem is not too important (it actually disappears at
t =0). In the opposite limit (J/t <1), the higher hole
mobility renders the situation much less clear; this limit
is considered ghysically more realistic. It is argued by
some authors'? that phase separation will take place at
any value of J /t; on the other hand, numerical results ob-
tained by means of high-temperature expansion'® and ex-
act diagonalization!* show evidence of hole binding and
no phase separation at J /¢t < 1.

The results that we present in this paper for the ground
state of two holes in the ¢-J model indicate that the mag-
nitude of the two-hole binding energy A on an infinite lat-
tice is considerably reduced from its value on a 4X4 lat-
tice; for instance, at J/t=0.4, which is a value in the
physical regime of the 7-J model, we estimate A to be
~0. 1t in magnitude on an infinite lattice, as opposed to
the value of 0.349¢ found on a 4 X4 lattice. We find that
the finite-size effects on A are mainly due to the single-
hole energy 6E;, which shows a more pronounced depen-
dence on the size of the lattice than the two-hole energy
S8E,. Results for the two-hole distribution C(r)} give fur-
ther indications of a weakened binding of the holes at
J/t <1 as the lattice size is increased. Our results also
indicate that a critical value J, of the parameter J exists
such that hole binding only takes place for J = J; we find
J.~0.27 (with r =1).

In the next section, we will briefly sketch the im-
plementation of the GFMC method used in this paper
(for a more detailed description, see Ref. 8); in Sec. Il we
will introduce the two-hole variational state which we use
as the initial state in our GFMC simulation, whereas Sec.
IV will be devoted to the discussion of our results.

II. THE METHOD

The GFMC method permits the calculation of the
ground-state expectation value @ of an observable @ as
the limit of the sequence

_ (¥, |G 08" v, o
(W G™wy 7

as n— . Here I‘I’T) is an initial state not orthogonal to
the ground state |¥,) and G is a suitable projection
operator, whose role is enhancing the component of |¥ ;)
along |W,). If the spectrum of the Hamiltonian H of the
system is bounded, as is the case of (I) on a finite lattice, a
convenient choice for & is G=E —H with E > E ..» the
largest eigenvalue of A .® For the case of two holes in the
t-J model, it is E,, =8¢, which corresponds to the max-
imum kinetic energy of two free holes in a ferromagnetic
background.

A Monte Carlo implementation of this scheme consists
of evaluating (2) as an average over the random walks of
N independent ‘“‘walkers” through configuration space.
The walkers are initially assigned A starting points, cor-
responding to the N configurations |c,),¢;7,...,lcu?
of the system. These configurations are stochastically
drawn from the probability distribution |W¥;(c)|¥s(c),
where ¥,(c) is the wave function of the trial state |¥;. )
and Wg(e) is a positive-definite “guidance” function,

@(n)

< (2)
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based upon some physical insight on the system and
whose role is to guide the random walk toward the most
important configurations.

The random walk of each walker consists of a succes-
sion of transitions to new configurations; a transition
from a given configuration [x ) to a new configuration
|x") is stochastically sampled from a probability distribu-
tion w(x—x') proportional to [{x'|G|x)|Wa(x")/
¥s(x). In order to obtain a statistical estimate of the
quantity @'™, each walker must be allowed to perform 2n
transitions, since every transition corresponds to one
operation of éG.

The quantity @' must be computed for increasingly
larger »n until convergence is observed, within statistical
error bars. In this paper we calculate the ground-state
energy of a quantum antiferromagnet with mobile holes
by following the same procedure explained in Ref. 8 for
the single-hole calculation; we use a correlated two-hole
variational state as the initial state I‘PT). We also com-
pute the ground-state two-hole distribution function by
means of a scheme known as “forward walking’ (see Ref.
6). The difficulty, in the case of the ¢#~-J model and other
fermionic problems, arises from the matrix elements
{x'|@|x ) not being always positive. This results in what
is known as the “minus” sign problem, i.e., in large sta-
tistical fluctuations of the quantity @™ as n increases,
which clearly make it very difficult to perform a large
number of iterations because of the increasing statistical
uncertainty affecting the estimates. Therefore it is very
important for the success of the method to have a
sufficiently accurate initial state so that convergence to
the ground state can be achieved within a relatively small
number n of iterations, before the statistical fluctuations
grow exceedingly. The algorithm can be also
significantly enhanced by the use of a suitable guidance
function, which by directing the random walk toward the
most important configurations can prevent the statistical
variance of the estimates from growing too rapidly, there-
by improving the change of observing convergence.

ITII. TRIAL STATE FOR TWO HOLES

Our GFMC calculation for two holes is based upon an
initial state which is a generalization of the ‘‘string”-
based variational state used in Ref. 8 in the GFMC calcu-
lation for a single hole. Let us therefore recall the
single-hole variational ansatz first (see also Ref. 17):

1
Y > uijﬁf)amk) ,

i<j

¥ (k)) =3 e "*RE(k)exp
Re

(3)

where k is the hole momentum and where the sum runs
over lattice sites R and over all lattice spin configurations
{lc?}, specified by assigning the value of the spin projec-
tion s at all lattice sites; the sum in (3) is restricted to
configurations |c¢ ) with a value of the z component of the
total spin S*=0. The operator exp(—13, . ;u;83/) is a
background antiferromagnetic spin-spin correlation
operator, and the function u;; depends on the distance be-
tween the two sites i and j. Finally,
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Plk)=1+ zfa(k)ﬁ+ Ef,,,.(k)ﬁ.ﬂ ,

with a= 1%, iy connecting two nearest-neighboring sites
and 7’ ERS?ERﬁRJm (k) is a spin-hole correlation
operator; f,(k) and f,.(k) are variational parameters.
This ansatz describe “strings” of spins displaced by one
site along the path. In order to generalize the state (3) to
the case of two holes, consider first a general, translation-
ally invariant state of two holes with opposite spin pro-
jections in an antiferromagnetic spin background:

Wo(Q) =3 3 e TR Vexp [—1 F u;873;
¢ R,r i<j
Xg(rlagiagiple? , @)

where Q is the total momentum of the state and r is the
relative distance of the two holes. Analogously to the
single-hole case, we introduce the “string” correlation
operator

PQr)=1+ 3 fi(Q P, + 3 fu( QP P, , (5)

where f,(Q,r) and f,,(Q,r) are variational parameters.
By acting on the state (4) with F(Q,r), we obtain our
variational state for two holes:

‘\IIT(Q»: z z o TIQRA rﬂ)ﬁ(Q’r)

¢ R,r
Xexp E u; 8787
I<j
Xg(r)aRTaR“HC) . (6)

The expectation value of the energy is minimized by tak-
ing g(r) to be nonzero for nearest-neighbor distances only
and with d-wave spatial symmetry, ie., g(£X)
= —g(+¥), corresponding to a singlet state of the two
holes. With this choice of g, the variational parameters
f.(Q,r) and f,,(Q,r) can be computed approximately
analytically by minimizing the energy expectation value
with z =0. In our calculation we allowed for strings of
length 1 only; i.e., we set f,,(Q,r)=0. We found that al-
lowing for strings of length 2 can improve the initial vari-
ational energy estimate, but has little effect on the con-
vergence to the ground state; namely, the ground-state
estimates are the same, within statistical error bars, with
the ones obtained by including strings of length 1 only.
We restricted our calculation to a state with Q=(0,0); in
this case, it is f,(Q,r)=f,, with f, real. This choice of
variational state is consistent with exact diagonalization
results according to which the lowest-energy state of two
holes is a d-wave singlet with momentum Q=(0,0), al-
though degeneracies exist which are attrlbuted to pecu-
liar geometrlcal properties of the lattice studied.’

As we did in the single-hole calculation, we used the
function

Ve=exp |—— 2 ;s 7

l<]

as a guidance function. We compute the two-hole energy
8E,=E,=E, by performing a transient estimation of
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the ground-state energy of (1) with two holes, E,, from
which we subtract the value of the ground-state energy
E, of the no-hole case (corresponding to the spin-;
AFHM), also calculated by the GFMC method; note that
in the no-hole case no “minus” sign probiem arises, so
that E, can be estimated rather straightforwardly and
with remarkable accuracy (see Ref. 7).

IV. RESULTS AND DISCUSSION

Let E? be the estimate of the ground-state energy of
(1) with M holes obtained at the nth GFMC iteration,
and let E,, be the extrapolated value in the limit n — 0.
In Fig. 1 the estimates SES” =E ") —E,, at different n, on
a 4 X 4 lattice (open c1rcles) are compared to the exact di-
agonalization results (dashed line) for J/t=1. At this
relatively large value of J/t, it is possible to obtain
sufficient evidence of convergence; upon averaging the
data from the last three iterations shown, we estimate
8E, on a 4X4 lattice to be 8E,/t=0.43%0.01, in agree-
ment with the exact value of 0.42, which corresponds to
the dashed line in Fig. 1. In Fig. 2 we show analogous re-
sults for 8E, on an 8X8 lattice; convergence to the
ground state can be observed, and if we average the
values of the last two iterations we obtain
8E,/t=0.27+0.02. The dotted lines in Figs. 1 and 2
correspond to a fit of the data with the expression

ESN=~E® +Bexp(—kn), “(8)

using E5, B, and « as fitting parameters. We find that
E3, i.e., the extrapolated estimate of E,, is the best
determined of the three parameters. The extrapolated
values for 8E, for the two lattices are the same as the
ones given above, within statistical error bars.

As we shall see below, our results indicate that the
two-hole energy estimates at J/t=0.4 do not change
significantly beyond 8X8; we expect this to be true at
J/t=1 as well, since the holes are less mobile in this case
and therefore finite-size effects will be even smaller than
at J/t=0.4. Thus we did not devote our computational
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FIG. 1. Transient estimation of the two-hole ground-state en-

ergy SE, on 4 X4 lattice at J/t=1. The dashed line refers to

the exact value for the 4X4 lattice. The open circles refer to

the estimates SEY” =E${ —E,. The dotted lines have been ob-

tained by fitting the data for E}¥ with the expression
E3> +Bexp(—kn).
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FIG. 2. Transient estimation of the two-hole ground-state en-
ergy 8E, on an 8 X 8 lattice at J /t =1. The dashed line refers to
the extrapolated value for the 8X8 lattice. The open circles
refer to the estimates SEYY =E{ —E,. The dotted lines have
been obtained by fitting the data for EY* with the expression
E3 +Bexp(—«n).

resources to study lattices larger than 8 X8 at J /r=1.

Because we are ultimately interested in a bound state
of two holes, we consider the binding energy
A=8E,—28E;, where 8E,=E —E, is the single-hole
ground-state energy. We compute 8E, in the same way
as 8E,; we use the single-hole trial state (3) with momen-
tum k=(4r/2,7/2) (where the single-hole energy band at-
tains its minimum) as the initial state; we allow for strings
of length 1 and find values of 8E; in agreement with the
ones reported in Ref. 8. By using the estimates obtained
above for 8E,, we obtain A /t =—0.90=%0.03 for the 4 X4
lattice, in agreement with the exact value, and
A/t=—0.5910.03 for the 8 X8 lattice. Since we know
that the single-hole energy estimates remain unchanged?®
beyond 8 X8 in the range 0.2 <J /¢ <5, we conclude that
the value of A/t found on an 8X8 lattice should be
sufficiently close to the value in the infinite lattice limit
and that binding occurs in this limit at J/t=1, with a
binding energy of about —0.6z. A Tfurther indication of
binding as well as of the limited finite-size effects affecting
the calculation at this value of J/# comes from the very
similar values found for the rms hole separation on the
two lattices, namely, R . =1.4010.02 (in agreement
with the exact result!) on a 4X4 lattice and
R, s=1.4720.03 on an 8X3§ lattice, the lattice constant
being set equal to 1.

We now turn to a more interesting and physically more
relevant case, i.e., J/t=0.4. In Fig. 3 we show transient
estimation results for 8E, on a 4X4 lattice. Fhe tenden-
cy of the succession of energy estimates to approach the
exact value is clear, and if we average the values from the
last two iterations, we obtain 8E,/t=—2.94+0.03, in
good agreement with the exact value of —2.993. Howev-
er, the rapid increasing of the error bar renders it much
more difficult than in the single-hole case to determine
the convergence value precisely. The problem is present
on larger lattices as well, as shown in Fig. 4 for 6E, (open
circles) on an 8X8 lattice. The worsening of the sign
problem passing from one to two holes is expected, par-
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FIG. 3. Transient estimation of the two-hole ground-state en-
ergy 8E,; on a 4X4 lattice at J/t=0.4. The dashed line refers
to the exact diagonalization result for the 4X4 lattice. The
open circles refer to the estimates 8EY", and diamonds refer to
the improved estimates 86'™. The dotted lines have been ob-
tained by fitting the data for EY and &' with the expression
E3 +Bexp(—kn).

ticularly at J/t <1, as a larger hole concentration results
in an increased rate of sign-changing transitions in the
random walk; such transitions are responsible for the sta-
tistical fluctuations. Since the amount of information
produced decreases dramatically with the number of
iterations n, it is important to extract the maximum
amount of information from the data generated at *‘early
time,” that is, at small », when the size of the error bars
is not too large.

A simple scheme!’ which effectively permits the ac-
celeration of the convergence to the ground state with no
additional computational cost consists of considering the
expectation values

{x.|Blx,)

6("):———-— e o Lo ,
{xlx,» 9)

—1.0 T T T v "’I T T I T T

N R

" 8% 8 (J/t=0.4)

SE(2)/t

| SN T S

-3.0— extrapolated value

| e e Y e s mem e o

o e ey e
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GFMC iterations

FIG. 4. Transient estimation of the two-hole ground-state en-
ergy 8E, on an 8 X8 lattice at J/t =0.4. The dashed line refers
to the extrapolated value for the 8 X8 lattice. The open circles
refer to the estimates 8E ", and diamonds refer to the improved
estimates 8&'™. The dotted lines have been obtained by fitting
the data for E{™ and 6" with the expression E§ +Bexp( —kn ).
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where
b, =(1+A,GM¥) (10}

A, being a variational parameter determined by minimiz-
ing the value of ™. &' yields a better ground-state es-
timate than

EW=(w, Q" AG" W, ) /(¥ |6 |¥,) ,

owing to the greater variational freedom of the state |y, )
compared to é "|W, ). This Lanczos-type procedure can
be applied to expectation values other than the energy,
although the parameter A, has to be determined by
minimizing the energy expectation value.

The improvement is particularly important at small #,
when the difference between successive values of EY" is
larger; this is shown in Figs. 3 and 4, where we compare
the values of 6" =" —E, and 8EY" =E}" —E, (cir-
cles). We can obtain extrapolated estimates for 8E, by
fitting the values for ES" and 6'™ with the expression (8).
The fits of the two sets of data yield the same extrapolat-
ed estimates, within statistical error bars. By using the
single-hole energy values, we estimate the magnitude of
the binding energy of the two-hole bound state in the
infinite lattice to be greatly reduced from its value on a
4 X 4 lattice.

To illustrate this point more clearly, we plot in Fig. 5
the estimates of A/t obtained as the difference
SE{ —28E\™, at J /t =0.4 on an 8 X8 lattice; the dotted
line is obtained from the fitting curves for both EY” and
E{". The solid line represents the exact value of the
binding energy for a 4X4 lattice. Despite the size of the
error bars, the results shown in Fig. 5 indicate rather
clearly that the magnitude of the binding energy is con-
siderably reduced, namely, from a value of 0.349¢ on a
4 X 4 lattice to about 0. 17 on an 8 X 8 lattice.

OQur results for the two-hole energy 8E, at J/t=0.4
indicate that 8E, does not change significantly in the
infinite lattice from its value on the 8 X 8 lattice; thus, be-
cause the single-hole energy also remains unchanged

04— ™ - -

0.2(— - —

GFMC iterations

FIG. 5. Transient estimation of the two-hole binding energy
A on a 8 X8 lattice at J/t=0.4. The solid line refers to the ex-
act value on a 4 X4 lattice and the dashed line to the extrapolat-
ed value for the 8 X8 lattice. The dotted line has been obtained
from the corresponding fitting curves for £, and E.
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beyond 8X8,% we estimate the binding energy A to be
{—0.12+0.04)¢ in the infinite lattice. The extrapolated
estimates for 8E,, 8E, and A for different values of J /2
and on the various lattices studied are reported in Table
1.

The main contribution to the significant size depen-
dence found for A arises from the single-hole ground-
state energy values. A possible explanation for the
different size dependence of the results for one and two
holes may come from a long-range effect of a single hole
on the antiferromagnetic background; the addition of a
second hole may result in an opposite contribution and
therefore in a substantial cancellation of such an effect.
As an example, consider the possible long-range planar
distortion of the antiferromagnetic moment of the spin
background caused by the motion of a single hole.'® Far
away from the hole, the distortion dmtis proportional to
k-r/r, where k is the hole momentum; in a two-hole state
with total momentum equal to zero, the distortions
caused by the two holes have opposite signs and the net
effect is a dipolarlike field decayings as ~1/r? at large
distances, as opposed to ~ 1/r for a single hole.

Further insight into the two-hole ground-state proper-
ties is provided by the calculation of the two-hole distri-
bution function C(r), defined as

C(r)=% §<ﬁ,ﬁj Y8R, —R;|—r), (11)
i<j

where il\i =1—#; is the hole number operator associated
with the ith site, which is positioned at R;. In Figs. 6 and
7, we show the results for C(r) on a 4X4 and on an 8§ X8
lattice at J /t =1; different symbols refer to the values of
C(r) computed after different numbers of GFMC itera-
tions. The dotted line refers to the data from the zeroth
iteration, whereas the dashed line refers to the data from
the last iteration performed. As we see, the holes are ini-
tially located at distances 1, V2, and 2 from one another;

TABLE I. Two-hole, single-hole, and binding energies es-
timated by the GFMC method on lattices of different size L at
J/t=1.0, 0.7, and 0.4. The two-hole state has momentum
Q=(0,0), whereas the single-hole state has momentum
k=(a/2,7/2). Statistical errors (in parentheses) are on the last
digits.

J/t=1.0
L 8E, /t SE,/t A/t
4 —0.42(01) —0.66(01) —0.90(03)
6 —0.30(03}
8 —0.26(02) —0.42(01) —0.58(04)
12 ' —0.42(01) ‘
: - J/t=0.7
—1.31(02) —0.50(01) —0.31(03)
J/t=0.4
4 —2.98(02) —1.32(01) —0.32(03)
6 —3.07(03)
8 —3.08(03) —1.48(01) —0.12(04)
10 —3.08(04)
12 —1.48(01)
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FIG. 6. Transient estimation of the two-hole distribution
function on a 4 X4 lattice at J /t =1. Different symbols refer to
data from different GFMC iterations. The dotted lines refer to
the data from the zeroth (variational) iteration and the dashed
lines to the data from the last GFMC iteration.

that is, they are either located on nearest-neighboring or
next-nearest-neighboring sites. As the algorithm is iterat-
ed, the weight is partially shifted to larger distances, but
1 and V2 remain largely dominant. Since the values of
C(r) change very little in the last three iterations sown
for both lattices, we conclude that the values from the
last iteration give a correct representation of the ground-
state two-hole distribution. We compute the rms hole
separation and obtain R, =1.40%0.2 at the last itera-
tion for the 4X4 lattice; this value is in agreement with
the exact one.* On the 8 X 8 lattice, the rms separation is
equal to R . =1.4720.03.

Figures 8 and 9 show the same calculation for the two
lattices at J/t=0.4. Here, as the algorithm is iterated,
the weight is significantly redistributed to the larger dis-
tances, and little evidence of convergence can be found.
The value of R . obtained from the last iteration on the
4X4 lattice is R, =1.531+0.03, lower than the exact
one. We attribute this difference to the need of iterating
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FIG. 7. Transient estimation of the two-hole distribution
function on an 8X 8 lattice at J/r=1. Different symbols refer
to data from different GFMC iterations. The dotted lines refer
to the data from the zeroth (variational) iteration and the
dashed lines to the data from the last GFMC iteration.
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FIG. 8. Transient estimation of the two-hole distribution
function on a 4 X4 lattice at J/t =0.4. Different symbols refer
to data from different GFMC iterations. The dotted lines refer
to the data from the zeroth (variational) iteration and the
dashed lines to the data from the last GFMC iteration.

the GFMC algorithm longer in order to recover fully the
large-distance features of the function C(r). The fact
that the same number of iteration yields better evidence
of convergence for the energy than for the two-hole dis-
tribution can be explained as being from the energy not
being very sensitive to the form of C(r) at large dis-
tances. From the results for C(r) on an 8X 8 lattice, we
can see that there is an evident tendency of the two holes
to “spread” at distances larger than the ones at which
they are positioned in the initial state and larger than the
ones available on a 4X4 lattice. This is consistent with
the decrease in the binding energy found as the lattice
size is increased and is a further indication of important
finite-size effects affecting the calculation on a 4X4 lat-
tice. We estimated the rms hole separation R_ . by
fitting the values of R, obtained at different GFMC
iterations with an exponential. On a 4 X4 lattice, we find
R, .=1.6110.04, in agreement with the exact value
within error bars. On lattices of larger size, the asymp-
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FIG. 9. Transient estimation of the two-hole distribution
function on an 8 X 8 lattice at J /¢t =0.4. Different symbols refer
to data from different GFMC iterations. The dotted lines refer
to the data from the zeroth (variational) iteration and the
dashed lines to the data from the last GFMC iteration.
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totic value of R_ ¢ given by the fit is significantly larger
than the one from our last iteration, which indicates the
need for a larger number of iterations. For instance, on a
10X 10 lattice, =2.07+0.04, whereas the estimate
from the last (48th) iteration is only equal to 1.713:0.03.
From the fit we estimate the number of iterations needed
to reach convergence to be of the order of 200 on the
10X 10 lattice, whereas we could only perform 60 itera-
tions because of the rapid increase of the size of the error
bars. The extrapolated value of R, is 2.071+0.04 on
both the 8 X8 and 10X 10 lattices.

The rapid decrease of A with increasing t/J for an
infinite lattice is in marked contrast with the results on a
4.X 4 lattice, where A seems to vary mildly with ¢ /J (in
fact, A~ —0.8J for 0<¢/J <5.* Our results suggest that
hole binding will no longer occur for J less than a critical
value J, <0.4¢; such a critical value is known to exist in
two dimensions for a d-wave bound state in the continu-
um case.!® We can estimate the value of J, by fitting the
data in Table I by means of an extrapolation formula; it
should be noted that in region J < 0.4t the binding energy
is very small and our GFMC calculation cannot resolve
the energy difference 8E, —28F, with sufficient accuracy.
We can obtain an extrapolation formula by modeling the
complicated many-body problem of two mobile holes in a
quantum antiferromagnet with a simple effective Hamil-
tonian describing the motion of two interacting quasipar-
ticles in a square lattice with N sites and periodic bound-
ary conditions:

ﬂeﬁ'= 2
ij<i,o

+ 3 J(R,R)A A (12)

[ ] 3
iLj<i

o~

t'(R;, R, M55,

io

+H.c.)

where b1 is a “dressed” quasiparticle creation operator
and f is a number operator; the sum runs over all pairs of
lattice sites, as well as over all spin projections o; R, is
the position vector of the ith site. The quasiparticles
move in a band E(k), which is assumed to have a
minimum at k=(x#w/2,xx/2). We assume that the
effective interaction J'(R;,R;) is attractive and short
ranged, ie., J'(R;,R;)=—J’ for nearest neighbors and
zero otherwise; the effective Hamiltonian (12) neglects
effects of quantum spin fluctuations. The eigenvalue
problem can be solved exactly (see also Ref. 19}); if we
seek a solution corresponding to a state with zero total
momentum and with the spatial symmetry of a d wave,
we find the following condition for the existence of a solu-
tion:

1=—2J"I,,~L,) , (13)

which determines the ground-state energy E. We have
introduced the quantities
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1 cos*(k, )

""—_J\Tg E—2E(k) ’

cos(k, Jcos(k, )
E—2E(k) ’

and we have used E(k)=E(—k). In the vicinity of

kpin=(7/2,m/2), where E(k) attains its minimum, 'we
can set E(K)~E ; +tig?+1t5g3, where g=k—k,; and
g, and g, are the components of q along the high-
symmetry direction (0,0)—{(m,7) and (0,7)—(m,0), re-
spectively. We introduce the binding energy
A'=E—2E_;,; in the limit where A’ is small, it is
straightforward to check that, upon neglecting terms of
order A? and higher, (13) can be expressed as

1

T—z[l'—“yAlnA/s T, (15)

1 14)
Iy=% %

where we have introduced the constants J,, ¥’, and €'.
We have expressed all energy scales in units of ¢}, since
ti>>ty for a single hole in the 2D t-J model,> and
neglected terms of order A? and higher (a linear term in
A’ has been conveniently absorbed in the cutoff energy
scale €' in the logarithm). If we assume that the function
t/J=f(A/t) for the problem of two holes in the 2D ¢-J
model will have an expansion analogous to (17) around
A/t=0 (i.e., around J =J,), we write

1_1

=1 |-, A
7T 1 ytln(A/e) (16)

where we have omitied terms of order (A/¢)? and
(A/t)In(A/e)? A simple fit of our extrapolated values of
A (Table 1) yields J, ~0.271.

The main conclusion that can be drawn from the re-
sults of the GFMC calculation for two holes outlined in
this paper is that since A(J/r <0.4)<0.1¢, the actual
value of J /¢ in the copper-oxide superconductors (taking
t~0.5 eV) cannot be much different than J /f =0.4 if this
model is relevant for their superconductivity. There is an
open question, namely, what happens if a finite fraction
of holes is introduced on the infinite square lattice? The
existence of a two-hole bound state is known to be related
to the occurrence of a many-body pairing instability, to
the extent that the system can be approximated by a con-
tinuum system where holes interact via a two-body poten-
tial.!® Another possibility is that phase separation may
take place for some range!> !4 or at any value of J /¢. 12

ACKNOWLEDGMENTS

This work was supported by the Office of Naval
Research under Contract No. N00014-93-1-0189 and by
the Supercomputer Computations Research Institute,
which is partially funded by the U.S. Department of En-
ergy under Contract No. DE-FCO05-85ER-250000.

*Present address: National Center for Supercomputing Appli-
cations, University of Illinois at Urbana-Champaign, Cham-
paign, IL 61820.

'P, W. Anderson, Science 235, 1196 (1987); F. C. Zhang and T.

M. Rice, Phys. Rev. B 37, 3759 (1988).

28. A. Trugman, Phys. Rev. B 37, 1597 (1988); C. Kane, P. Lee,
and N. Read, ibid. 39, 6880 (1989); Z. Liu and E.
Manousakis, ibid. 44, 2414 (1991).



11 904

3Y. Hasegawa and D. Poilblanc, Phys. Rev. B 40, 9035 (1989);
E. Dagotto, J. Riera, and A. P. Young, ibid. 42, 2347 (1990).
4T. Barnes, A. E. Jacobs, M. D. Kovarik, and W. G. Macready,
Phys. Rev. B 45, 256 (1992).

SE. Kaxiras and E. Manousakis, Phys. Rev. B 38, 866 (1988); J.
Riera and A. P. Yound, ibid. 39, 9697 (1989).

8M. H. Kalos, Phys. Rev. 128, 1791 (1962); D. M. Ceperley and
M. H. Kalos, in Monte Carlo Methods in Statistical Physics,
edited by K. Binder (Springer-Verlag, Berlin, 1979), S. A.
Chin, J. W. Negele, and S. E. Koonin, Ann. Phys. (N.Y.) 157,
140 (1984).

73. Carlson, Phys. Rev. B 40, 846 (1989); N. Trivedi and D. M.
Ceperley, ibid. 41, 4552 (1990).

8M. Boninsegni and E. Manousakis, Phys. Rev. B 46, 560 (1992).

9N. Bulut, D. Hone, D. J. Scalapino, and E. Y. Loh, Phys. Rev.
Lett. 62,2192 (1989).

10T, Barnes and M. D. Kovarik, Phys. Rev. B 42, 6159 (1990).

1M, Boninsegni and E. Manousakis (unpublished).

MASSIMO BONINSEGNI AND EFSTRATIOS MANOUSAKIS 47

12v. Emery, S. Kivelson, and H. Lin, Phys. Rev. Lett. 64, 475
(1990).

13M. Luchini, M. Ogata, W. Putikka, and T. M. Rice, Physica C
185, 141 (1991).

14, Dagotto, A. Moreo, F. Ortolani, D. Poiblanc, and J. Riera,
Phys. Rev. B 45, 10741 (1992).

15M. Caffarel, F. X. Gadea, and D. M. Ceperley, Europhys.
Lett. 16, 249 (1991).

16B. Shraiman and E. Siggia, Phys. Rev. Lett. 61, 467 (1988); M.
Boninsegni and E. Manousakis, Phys. Rev. B 43, 10353
(1991). '

7M. Boninsegni and E. Manousakis, Phys. Rev. B 45, 4877
(1992).

18M. Randeria, J.-M. Duan, and L.-Y. Shich, Phys. Rev. Lett.
62, 981 (1989); Phys. Rev. B 41, 327 (1990).

19y..L. Wang, E. Manousakis, and C. D. Wentworth, Phys.
Lett. A 140, 200 (1989).



