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Green’s-function Monte Carlo study of the t-J model
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We show how the Green’s-function Monte Carlo method can be used to compute accurately the
ground-state energy of the two-dimensional ¢-J model for lattices of large size. This is demonstrated
for the case of a single hole, with the aid of suitable initial and guidance functions. Our transient
estimates for the ground-state energy of the 4 x 4 lattice are in remarkable agreement with the exact
values; we report results for lattices of significantly larger size than 4 x 4.

PACS number(s): 74.20.—z, 75.10.Jm, 74.65+n, 02.70.4-d

Over the past few years, a considerable effort has been
devoted to the study of the two-dimensional (2D) t-J
model’ with one or more holes, as it may capture the
essential physics of the copper oxide superconductors. In
the 2D ¢-J model the motion of holes is described by a
simple nearest-neighbor hole-hopping term added to the
spin—%— antiferromagnetic Heisenberg model (AFHM):

H=—t " (a},85, +He) +JT D (si'sj — $huhy) .
<tj>s <ij>
(1

Here, &I’s = é:f,,(l —fi5,_g), where é:f, 5 creates an electron
at lattice site ¢, with spin projection s in a given direc-
tion of the spin space, and #i; = sé:{ #+Ci,s is & number

operator; &I, , creates an electron only on an empty site,

thus avoiding double occupancy. We consider a square
lattice of N = L x L sites with periodic boundary con-
ditions. This Hamiltonian has been investigated with
several analytical approaches, leading to important theo-
retical predictions.? Significant interest is directed toward
numerical studies, not only to check the analytical results
obtained with the different approximations, but also to
gain quantitative information which may offer further in-
sight. Exact diagonalization®* has produced important
results but is limited to lattices of small size (such as 4x4)
by computer memory constraints; this renders the ex-
trapolation to the infinite lattice problematic, due to the
unavailability of calculations on lattices of significantly
different sizes. Monte Carlo studies, which have rela-
tively limited memory requirements and could therefore
represent a viable alternative to extend the investigation
to lattices of larger sizes, have so far proven ineffective
because of the well-known “minus” sign problem, related
to the fermionic character of the system.

The Green’s-function Monte Carlo (GFMC) method®
has been applied to several fermion problems including
the Hubbard model,® using the so-called fixed-node ap-
proximation. In such an approach the “minus” sign prob-
lem is avoided by dividing the configuration space accord-
ing to the sign of a simple Slater determinant. This is an
approximation which assumes an a priori knowledge of
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the nodal surface of the ground-state wave function. The
GFMC method has been successfully applied” to the no-
hole case of the Hamiltonian (1), i.e., the spin-3 AFHM,
where the “minus” sign difficulty can be removed by map-
ping the model onto a 2D Bose system. If mobile holes are.
present, as in the case of the ¢-J model, such transforma-
tion does not eliminate the “minus” sign complication. In
this paper we show how the GFMC method, in conjunc-
tion with suitable trial and guidance functions, can be
profitably used to accurately compute ground-state en-
ergy expectation values for the 2D {-J model on lattices of
significantly larger sizes than the ones accessible to exact
diagonalization. Despite the “minus” sign problem, our
application of the GFMC method affords us to perform
a transient estimation and obtain a significant improve-
ment on the variational ground-state estimate yielded by
our trial state. We carried out a GFMC calculation of
the ground-state energy of a single hole, with the aid of a
recently proposed variational ansatz,® used as a starting
trial state. We report results for lattices of different sizes,
up to 12 x 12. Our energy estimates for the 4 x 4 lattice
coincide with the exact results, within statistical error
bars, over the range 0 < t/J < 5. We emphasize the
importance of starting with a good variational state, in
order to obtain as accurate as possible upper bounds on
the exact ground-state energy. In addition, the GFMC
method can be generally used to gauge the validity of a
given variational ansatz.

Firstly, we briefly review the GFMC method and de-
scribe our Monte Carlo implementation. We wish to find
the lowest eigenvalue FEy of the Hamiltonian H. The
spectrum of H on a finite lattice is bounded; thus, we can
use the projection operator ' = E — H, with E > Enax,
Enax being the largest eigenvalue of H. Starting from
a suitable trial state |¥r > having nonzero overlap with
the true ground state of H , we form the succession of
“mixed estimates” Eén), n=20,1,2,.., where

E(n) _ < \P'Tlﬁ énl\I’T >
0 < Ur|GnTr >

()
On expanding [T > in eigenstates of H it can be eas-
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ily shown that Eg < Eé"+m) < E(()") for any n and m,

and that B{™ — Fg as n — co. A Monte Carlo imple-
mentation of the above algorithm consists of a random
walk performed by a set of N walkers through the con-

figuration space; at each step n, the mixed estimate Eé")
can be statistically evaluated. Let ¢ stand for a given
configuration of the system, specified by assigning the
position of the holes and the value of the projection of
the spin at all other lattice sites. Let T¢(g) be a real
and positive “guidance” function, which contains some
physical insight about the system under study and whose
role is guiding the random walk toward the most favor-
able configurations (importance sampling), in order to
reduce the statistical variance of the mixed estimates.?
In order to assign each walker a starting point we cre-
ate N configurations {q1, g2, ..., qn} distributed accord-
ing to ¥ (q)|¥r(g)]. At the starting point each walker
is assigned a phase factor ¢; = ¥r(g;)/|¥7r(g;)| and a
weight g; = 1. The action of the operator G on the state
@y > is given the following stochastic interpretation:
every walker is allowed to make a transition from the
configuration g; to the new configuration x; with prob-
ability w(g: — z;) = Q(Qi)JG(Qi —2:)|[Ta(z:)/Pelg))],
where G(g; — z;) =< z;|G|g; > and a(g;) is a normal-
ization factor. This procedure will move each walker to
a new point z; in the configuration space and update its
phase and weight as follows: the weight g; is multiplied
by 1/c(g;) and the phase ¢; is multiplied by the sign of
G(g: — =;). It can be easily checked that a statistical
(1)

estimate of Fj "’ is given by
g0 _ 2iF(2) 9 ¢ EL[Vr(w:)] 3)
0 > Flxi) gi ¢ ’

where EL[Tr(x;)] = [Hr(z;)/Tr(z;)] is the local en-
ergy and F(z;) = U%(z;)/¥e(z;). By allowing for an-
other transition of every walker and by updating again
phases and weights, we can compute Eé2), in the same

way we computed Eél) [Eq. (3)], and so on. In order
not to decrease the efficiency of the algorithm by car-
rying along walkers with negligible weight, a procedure
called branching is usually implemented, which consists
of making several copies of those walkers which have ac-
cumulated a relatively large weight and deleting those
with small weight, in such & way that the size of the pop-
ulation (i.e., the total number of walkers) is kept roughly
constant.

The algorithm should be iterated to reach conver-

gence, defined such that, for sufficiently large M, E((,M) = .

EMFD - L o

EM*™ = ... within statistical
variance. However, when dealing with problems with
fermionic character such as ours, the variance of EéM)
increases exponentially with M. Thus, the computer
time required to obtain the desired error bar on ESM)
also increases exponentially with M. This is known as
the “minus” sign problem,® which clearly makes it very
difficult to compute EéM) for sufficiently large M until
convergence is achieved. Therefore, an accurate initial

trial state {¥p > is crucial in order to obtain a value of

E(()M) as close as possible to the exact ground-state energy
with a relatively small number of iterations (each value

of Eé") is strictly a ground-state energy upper bound,
within statistical error bars). This approach is commonly
referred to as a transient estimation. As we show below,
the GFMC technique combined with the use of a varia-
tional ansatz which we devised for the problem of a hole
in the ¢-J model permits to obtain very accurate ground-
state energy estimates.

Next, we recall the variational ansatz we recently
proposed® for a single quasihole excitation in the 2D t-J
model, which we use in this work as starting trial state
for our GFMC calculation. This ansatz can be expressed
as follows:

[\I’T (k) >

1 szaz | A
——5 E uijsfs; aksIC >,
1<

= S (~DHIF(K) exp

(4)

where [c > is a lattice spin configuration, specified by
assigning the value of the projection of the spin in a given
z direction of the spin space for each lattice site; the sum
is restricted to lattice spin configurations with a value of
the z component of the total spin, S% = 0 and L(c) is
equal to the number of “down” spins in one of the two
sublattices; dx s = 1/\/_]7 YR e~ kR dn,s, where the
sum runs over all lattice sites; the function u;; is a spin-
spin correlation function which depends on the distance
between the two sites ¢ and j. Finally,

)= {1+ fa®@Pat ) fow (&)PaPs |,

a,a’

with a = +X,=+¥ connecting two nearest-neighboring
sites and Pa = >R &L,a&Rﬂa,a- F(k} is a spin-hole
correlation operator. The variational parameters fa(k),
faar(k) have been determined in Ref. 8. The variational
state (4) gives fairly good single-hole energy estimates in
the range 0 <t/J <5 at k = (7w/2,7m/2).8

In our GFMC calculation we restricted ourselves to
configurations with s = —% and k = (7/2,7/2), i.e., the
wave vector at which the hole band attains its minimum
according to several calculations. We used the function
Wi = exp (—3 X, uij87s?) as guidance function. The
hole energy 6 F is computed by subtracting the ground-
state energy of the no-hole case (spin-% AFHM) from the
total energy of the single-hole case. The ground-state en-
ergy for the no-hole case was also computed via GFMC,
and our results for this case (which presents no sign prob-
lem) are in agreement with the ones given in Ref. 7. In
Fig. 1 we show typical transient estimation results, for
t = 5J on a 4 x 4 lattice. The dashed line indicates the
exact ground-state energy, from Ref. 4. To demonstrate
the importance of the initial state we compare the results
obtained using the following two different trial states,
with the same population size: (a) the state ¥’ (results

are shown by squares in Fig. 1), given by Eq. (4) with
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FIG. 1. Transient estimation of the hole energy for ¢/J = FIG. 2. Transient estimation of the hole energy for ¢/J =

5 on a 4 x 4 lattice, obtained with the states ¥’ (squares) and
T (circles) as starting trial states. The dashed line refers
to the exact diagonalization result. The hole state has wave
vector k = (w/2,7/2).

the optimal variational parameters and (b) the state ¥7?
(results are shown by circles in Fig. 1), also given by Eq.
(4) but with fa(k), faar(k) = 0, which corresponds to a
state with no spin-hole correlations {(both states retain
spin-spin correlations). The exact ground-state energy
is —10.49.7, the variational energy estimate given by the
trial state U7 is —9.691J, the one given by the state ¥1!
is 2.565J, i.e., U is a poorer trial state. ¥! yields, for
the same number of iterations, a much better ground-
state energy estimate, although the algorithm permits
us to obtain in both cases a remarkable improvement on
the variationsl ground-state energy estimate (zeroth it-
eration); in addition, the size of the error bars is much
smaller when the state ¥’ is used. More quantitatively
we can compare the error bar we obtained after 16 it-
erations in the two cases: we found 0.016J for ¥ and
0.124J for ¥!!, which means that in order to obtain a
comparable error bar when using the state U/ we would
roughly need 80 times as many walkers (and the energy
estimate would still be worse than with ¥7); on the other
hand, the computer time gain due to the simpler form of
T ig only a factor of 6 or 7.

In Table I we report results for the hole energy 6FE,
computed by transient estimation on lattices of sizes 4x 4,
8 x 8, and 12 x 12, using the state (4) as trial state; we
also indicate the number of iterations needed to reach
convergence. In this work we assumed convergence to be
achieved when the value of the mixed estimate does not
change for at least five iterations, within statistical error
bars. At low values of t/J evidence of convergence can
be shown over a larger interval, as in the cases shown in
Figs. 2 and 3, which refer to calculations on a 4 x 4 and
on an 8 x 8 lattice, at t/J = 0.5. At larger values of t/J,
however, the statistical variance rapidly increases with
the number of iterations; a substantially larger amount of
CPU time is therefore needed to obtain the same evidence
of convergence we found at low values of ¢/J.

0.5 on a 4 x 4 lattice. The hole state has wave vector k =
(m/2,7/2). The dashed line refers to the exact diagonalization
result.

On comparing the GFMC results for the 4 x 4 lattice
with exact diagonalization results (from Ref. 4, second
column of Table I} we find excellent agreement in the
entire range 0 < ¢/J < 5. The results for lattices of
size L > 4 can give an indication of the finite-size effects
affecting the calculation on lattices of small size.

As the lattice size is increased, the difference between
the variational estimate of the total energy of the single-
hole case, given by the trial state (4), and the exact
single-hole ground-state total energy increases as NJ,
due to the approximate way in which the state (4) ac-
counts for the background antiferromagnetic energy, i.e.,
the dominant contribution to the total energy for large
N. Therefore, a larger number of iterations is necessary
to achieve convergence on a lattice of larger size, for the
same value of t/J, with a consequent rapid increase in
the computer time required.
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FIG. 3. Transient estimation of the hole energy for t/J =
0.5 on an 8 x.8 lattice. The hole state has wave vector k =

(n/2,7/2). -
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TABLE I. Hole energy at various values of £/J, computed by GFMC on lattices of different
sizes. The hole state has wave vector k = (7/2,w/2). For the 4 x 4 lattice exact diagonalization
results are given for comparison. Results are expressed in units of J. For each lattice, the number
on the left indicates the iterations required to obtain the GFMC estimate.on the right. Statistical
errors (in parentheses) are on the last two digits.

t/J 4x4d(exact) 4x4 8x8 . 12 x 12

0.20 2.235 48 2.241(05) 150 2.129(07) 300 2.125(15)
0.50 1.765 48 1.767(05) 90 1.640(09) 200 1.599(22)
1.00 0.655 34 0.662(10) 96 0.417(16) 200 0.419(33)
2.50 —3.305 . 26 —3.288(18) 80 —3.678(32) 160 . —3.676(42)
5.00 ~10.49 20 ~10.456(36) 24 —10.783(12) 72 —10.838(56)

In conclusion, the combination of wvariational and
Green’s-function Monte Carlo methods can be an effec-
tive way to extend the numerical investigation on the t-J
model to systems of significantly larger sizes than the
ones accessible to exact diagonalization, as our results
for the ground-state energy of a single hole show. Our
interest is now toward investigating the pairing between

holes within the 2D t-J model, with the approach out-
lined in this paper.
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