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Scaling of thermal conductivity of helium confined in pores
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~Received 8 March 2001; published 21 September 2001!

We have studied the thermal conductivity of confined superfluids on a barlike geometry. We use the planar
magnet lattice model on a latticeH3H3L with L@H. We have applied open boundary conditions on the bar
sides~the confined directions of lengthH) and periodic along the long direction. We have adopted a hybrid
Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical
equations of motion we use a discretization technique which introduces errors onlyO@(dt)6# in the time step
dt. Our results demonstrate the consistency of scaling using known values of the critical exponents and we
obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity
scaling function are in very good agreement with the available experimental results for pores using the
temperature scale and thermal resistivity scale as free fitting parameters.
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I. INTRODUCTION

The superfluid transition of liquid4He offers a unique
opportunity for testing the finite-size scaling theory of sta
and dynamic critical phenomena. Recently, a sophistica
experimental study was carried out in microgravity enviro
ment, the so-called confined helium experiment~CHeX!.
Lipa et al.1 measured the specific heat of helium confined
a parallel plate geometry with a spectacular nanokelvin re
lution, thus, providing experimental results within a fe
nanokelvin of Tl . When the critical temperature is ap
proached, the bulk correlation lengthj of the fluid can be-
come of the order of the confining length. CHeX approach
so close to the lambda point that the correlation length
came macroscopic in size. In this case the whole fluid act
a correlated way and this changes the value of global p
erties, such as the specific heat, relative to their bulk valu
In a parallel approach, Mehta and Gasparini2,3 have also re-
ported earth-bound measurements on samples with sm
plate spacingL. The size ofL used is these measurements
smaller so that the results are not significantly influenced
the change inTl between the top and bottom of the film
because of hydrostatic pressure difference which exists
to the earth’s gravitational field.

The finite-size scaling ~FSS! theory4 and the
renormalization-group theory5 ~RGT! were expected to de
scribe the behavior of the system at temperature close toTl .
A testable implication of this theory is that very close to t
lambda point, in a confined system with a confining length
sizeH, a dimensionless quantity or the ratio of two quantit
having the same dimensions, is only a function of the ratio
j/H. Therefore the values of a given observableO(t,H), for
various values ofH and of the reduced temperaturet5u1
2T/Tlu, divided by its bulk value ofO(t,H5`) should be
a dimensionless scaling functionf (x), where x5j(t)/H.
The results of CHeX were in remarkable agreement w
predictions which were available prior to the experime
based on scaling functions obtained from renormalizati
group theory6–8 and those obtained by combining FSS a
the results obtained from large-scale simulations.9

A second equally important step toward understanding
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FSS theory is to study dynamical and transport proper
near a critical point. A well-suited candidate problem for th
study is the thermal conductivityl of 4He nearTl . When
Tl is approached from above, the thermal conductivity of
fluid diverges.10,11The precise behavior of bulkl as a func-
tion of t was studied in great detail both experimentally12–14

and theoretically.15

There are several recent theoretical studies of dynam
critical phenomena and dynamical scaling. Koch, Dohm, a
Stauffer16 presented field-theoretical and numerical stud
of the validity of dynamic finite-size scaling for relaxation
dynamics in cubic geometry with periodic boundary con
tions above and belowTc . Quantitative agreement betwee
theory and Monte Carlo data was obtained by them. Ko
and Dohm17 have provided a prediction for the dynam
finite-size scaling function for the effective diffusion con
stant of model C of Hohenberg and Halperin.18

Bhattacharjee19 derived an approximate form of the scalin
function for the thermal conductivity using a decouple
mode approximation and modelE. Krech and Landau20 cal-
culated the transport coefficient of the out-of-plane magn
zation component at the critical point, which is related to t
thermal conductivity of liquid4He using Monte Carlo spin
dynamics simulations of theXY model in three dimensions
on a simple cubic lattice with periodic boundary condition
They determined the critical exponent characterizing
thermal conductivity.

Accurate experimental studies have been carried out
only for dynamic bulk phenomena with improved resoluti
but also dynamic propertiesin confined geometriesdeeply in
the critical region.21,22 Rather recently, Kahn and Ahlers23

measured the thermal conductivity of liquid4He confined in
a glass capillary array of thickness 3 mm with holes 2mm
in diameter. Their results show that long cylindrical samp
have a transition from three-dimensional to one-dimensio
behavior and there is no phase transition in the o
dimensional system. However, as measurements over a
range of hole-diameter are required in order to test the fin
size scaling theory for transport properties, further expe
mental studies are planned24 in order to reveal dynamica
exponents near the critical point and to study the finite-s
©2001 The American Physical Society13-1
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scaling behavior of the thermal conductivity in such confi
ing geometries. To avoid the limitations imposed by t
earth’s gravity, this experimental effort24 will be carried out
under microgravity conditions on the Low Temperature M
crogravity Facility on International Space Station.

In this paper we wish to study the thermal conductivityl
of confined helium and to calculate the scaling function
sociated withl for a fixed geometry. Since there are alrea
experimental results23 for the scaling function ofl for the
pore-like geometry, in this paper we will focus our attenti
to this geometry because we hope to compare with the
periment. We will examine the FSS theory for the therm
conductivity of helium confined in a barlike geometry, i.e
on anH23L lattice with L@H. This confining geometry is
similar to that of Kahn and Ahlers23 because two of the di
mensions of a pore used in their experimental studies
confining as is the case of the barlike geometry. We w
consider the limit in which our results are independent of
bar lengthL. We will apply periodic boundary condition
~BC! in the L direction because these BC approach the b
limit faster. In the other two directions which are kept fini
we will apply open boundary conditions. We will use th
dynamics of planar-magnet model and Monte Carlo simu
tion to studyl(t,H). We find thatl(t,H)H2p/n plotted as a
function ofx5tH1/n fall on the same curve for a wide rang
of values ofH and t, using the known values ofn and p.
This demonstrates that finite-size scaling is also valid
dynamical critical properties. In addition we obtain the sc
ing function which fits very well the experimental data
Kahn and Ahlers23 using the scale of temperature and t
thermal conductivity scale as free parameters.

II. THE METHOD

We will first briefly describe the model and the numeric
method used and show how the thermal conductivity is co
puted in our model. To describe the dynamics of a superfl
we will use the planar magnet model which is classified
modelF ~or E in the absence of an external field! by Hohen-
berg and Halperin.18 Matsubara and Matsuda25 has proposed
modelF to explain the properties of liquid4He. The problem
of hard core bosons can be described by a lattice gas m
which can be mapped to the quantum antiferromagne
which the superfluid order parameter corresponds toSx-iSy
while the density of the boson system corresponds to 1/2Sz .
In order to study equilibrium critical properties of a supe
fluid one uses theXY model9,26 because the planar magn
model and theXY model belong to the same universali
class.27 For critical dynamics of a superfluid, however, o
needs to use the full planar magnet model in which the r
of the third component of the pseudospin is crucial.18

In the pseudospin notation, the planar magnet model ta
the following form:

H52J(̂
i j &

~Si
xSj

x1Si
ySj

y!, ~1!

where the summation is over all nearest neighbors,SW i

5(Si
x ,Si

y ,Si
z), andJ sets the energy scale. In the usualXY
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model the two-component pseudomagnetization correspo
to the superfluid order parameter. In the planar mag
model, the third component corresponds to the particle d
sity and it is necessary in order to study the dynamics.

In our calculations, we use a barlike geometry, i.e., aH
3H3L lattice withL@H. This geometry is chosen in orde
to mimic the pore geometry used in experimental studies
our calculations, open boundary conditions are imposed
the H direction, and in theL direction we applied periodic
boundary conditions. In open or free boundary conditions
order parameter is allowed to take any value at the bou
aries. In our pseudospin model this means that the spin
the boundary have no neighbors outside the confining sp

We use a hybrid Monte Carlo procedure20 which consists
of a combination of steps using the Metropolis update,
Cluster update,28 and the over-relaxation algorithm.29 Using
this hybrid algorithm, we generate approximately 300
10 000 uncorrelated configurations from the equilibrium c
nonical ensemble at a given temperature. Each configura
is evolved using the equations of motion for the planar m
net model which are given as follows:20,18

d

dt
SW i5

]H

]SW i

3SW i . ~2!

Starting from a particular initial spin configuration, we pe
form numerical integration of these equations of motion. F
lowing Ref. 30 we use a recently developed decomposit
method31 where the integration is carried out to a maximu
time tmax ~typically of the order oftmax5400) with a time
stepdt50.05. We made sure that this way we determined
real-time history of every configuration within a sufficient
long interval of time (0<t<tmax). Finally, we compute the
thermal average of a time-dependent observable~such as the
thermal current-current correlation function! by averaging
over all the values of the observable obtained by evolving
the independent initial equilibrium configurations genera
via the hybrid Monte Carlo procedure.

Compared to calculating static critical properties, t
computation of dynamical properties is far more CPU tim
intensive and demands large computational resources.
computations described here were carried out on a dedic
massively parallel cluster of 64 CPUs which was design
by our group to achieve high performance to cost ratio.

We computed the thermal conductivity onH3H3L lat-
tices, whereH56,8,10,12,14,20 andL55H. The thermal
conductivityl of liquid 4He at a given temperatureT can be
calculated using the dynamic current-current correlat
function20

l5
1

kBTxzz

2

pE0

`

dt(
i

^ j 0
z~0! j i

z~ t !&, ~3!

where the out-of-plane static susceptibility

xzz5^Mz2&/~kBTL3! ~4!

is needed for normalization. Thez componentj i
z of the cur-

rent densityjW i associated with the lattice pointi is defined by
3-2
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j i
z5J~Si

ySi 1ez

x 2Si
xSi 1ez

y !, ~5!

where the notationi 1ez denotes the nearest neighbor of t
lattice sitei in the z lattice direction.

Now, we would like to examine the finite-size scalin
hypothesis for the thermal resistivityR(t,H)51/l(t,H), and
to compare our results with the existing experimen
results.23 The dependence upont of the bulk thermal resis-
tivity can be described by the power law

R~ t !5R0tp, ~6!

wherep is a dynamic critical exponent. Using Eq.~6!, the
finite-size scaling expression for the thermal resistiv
R(t,H) is given by

R~ t,H !Hp/n5 f ~ tH1/n!, ~7!

where the functionf (x) is universal andn50.6705 is the
critical exponent of the correlation length.32

III. RESULTS

In this section, we calculate the thermal resistivity, w
examine its scaling behavior with respect toH and then we
compare the scaling function with the experimental resu
To calculate these observables with small statistical er
even with our utilization of the most recent numerical a
vances and with using the 64-node dedicated cluster, it
quires signinificant amount of time of high-throughput co
putation.

Figure 1 shows some of our results for the thermal re
tivity R(T,H) as a function of temperatureT for various
lattice sizes with open boundary conditions in theH direc-
tion. Our results forR(T,H) for several values ofH and T
are given in Tables I and II. We wish to makeL large enough
so that finite-size effects due toL are smaller than our statis
tical errors. We have found that takingL'5H and applying

FIG. 1. Thermal resistivityR(T,H) versus temperatures for ba
like lattices with sizes that correspond toH56,8,12,20 andL
55H. The bulkTl51.5518 is also shown.
14451
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periodic boundary conditions along the direction ofL intro-
duces insignificant finite size effects due to the finite size
L for the temperature range studied here. Our calculations
applicable in the region for which the correlation length
large but smaller thanL. We wish to explore the region
wherej(t) can become comparable and even larger thanH
but still smaller thanL. Namely our calculation should b
restricted in the region where our results forR do not to feel
the size effects due to the finiteness ofL. SinceL55H there
is a significant region of our dimensionless parameterj(t)/H
where the conditionj(t),L is satisfied. Most of the experi
mentally probed region is covered by this region where
calculation is ‘‘safe.’’

Notice in Fig. 1 that the thermal resistivity feels stron
finite-size effects due to the bar thicknessH. The arrow
shows the bulk transition temperatureTl51.5518 obtained
from Monte Carlo simulation using the planar magn
model.27 In bulk helium R(t) approaches zero as the bu
transition temperatureTl is approached from above.

We wish to avoid using any adjustable parameters to
tain scaling of our results. Thus, we need to examine if
results obey scaling using the known values of the criti
exponentsn andp. The value ofn is accurately known from
theoretical and experimental studies of static critical prop
ties and we shall use the valuen50.6705 as determined b
Goldner and Ahlers.32 There is less agreement betwe
theory and experiment on the actual value of the dynam
critical exponentp. Ahlers33 used a power law fit to the dat
of Tam and Ahlers12 for their ‘‘Cell F ’’ and he found the

TABLE I. Calculated results for the thermal resistivity for la
tices H3H3L with L'5H and H56.8,10,12,14. The number in
parenthesis gives the error in the last decimal places.

T/J H56 H58 H510 H512 H514

1.40 0.350~34! 0.178~11! 0.053~4! 0.033~4!

1.45 0.535~35! 0.286~17! 0.143~10! 0.068~6! 0.050~4!

1.50 0.662~61! 0.470~36! 0.353~38! 0.247~31! 0.182~21!

1.5518 0.843~62! 0.670~56! 0.614~53! 0.501~56! 0.452~59!

1.60 0.923~84! 0.821~36! 0.688~67! 0.652~55! 0.706~42!

1.65 1.028~81! 0.951~64! 0.854~42!

1.70 1.114~69! 0.901~63! 0.988~102! 0.984~105!
1.80 1.213~97! 1.216~86! 1.125~94! 1.081~166!

TABLE II. Calculated results for the thermal resistivity for a
203203100 size lattice.

T/J H520

1.50 0.053~3!

1.52 0.158~13!

1.54 0.294~27!

1.56 0.408~48!

1.58 0.572~79!

1.60 0.567~62!

1.65 0.733~76!

1.75 1.086~130!
3-3
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value p50.4397. On the other hand the dynamic scal
theory34 had predicted a divergence inl with a critical ex-
ponent given byp5n/2'0.335. However, renormalization
group calculations15 can explain quantitatively the differenc
between the experimental effective exponentp50.44 and
the asymptotic exponentp5n/2 in terms of non-universa
corrections to the asymptotic critical behavior which van
extremely slowly ast vanishes.

Figure 2 shows a scaling plot of the thermal resistiv
scaling functionf (x)5R(t,H)tp/n versus the scaled reduce
temperature parameterx5tH1/n, where the reduced tempera
ture is taken relative to the bulk transition temperatureTl .
Our Monte Carlo data collapse onto a universal curve us

FIG. 2. The universal functionf (x) obtained for barlike geom-
etry. The solid line represents the available experimental results
porelike geometry. In the experimental results the resistivity sc
and the temperature scale are used as free parameters.
A
ow
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the value ofp'0.44 determined by Ahlers.33 In Fig. 2 we
compare our universal functionf (x) with the experimental
data obtained by Kahn and Ahlers23 represented by a solid
line. In order to do this, we used two multiplicative constan
as free fitting parameters, one multiplying the scale ofx axis
and another the scale ofy. The agreement between Mon
Carlo simulation and experiment is quite satisfactory. In
past it has been demonstrated26,35 that the boundary condi
tions play a significant role in defining the universal functi
f (x). We believe that if we use more realistic boundary co
ditions, such as Dirichlet boundary conditions, along theH
direction we can reduce the number of fitting parameters
only one.

Our results are expected to scale using the same effec
critical exponent and not with the asymptotic exponent. U
ing the asymptotic value ofp5n/2, the results of our simu-
lation also collapse~within our error bars! on a different
scaling function. However, if we attempt to fit the scalin
curve with the experimental resistivity of Kahn and Ahle
we obtain a lower quality fit than that of Fig. 2.

In summary we have calculated the thermal resistiv
R(t,H) of liquid 4He in a porelike geometry~on a H3H
3L lattice! applying open boundary conditions in theH di-
rection. We have been able to demonstrate the validity
finite-size scaling theory and we obtained the thermal re
tivity scaling functionf (x) using known values for the criti-
cal exponents and no adjustable parameters. In addition
scaling functionf (x) for R(t,H) agrees rather well with ex
perimental data using the temperature scale and therma
sistivity scale as free parameters.
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