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Using the spin-2 antiferromagnetic Heisenberg model on a square lattice, we calculate the
first two cumulants of the Raman scattering intensity by the variational Monte Carlo method.
We use a Jastrow variational wave function which includes spin-spin correlations and possesses:
antiferromagnetic long-range order. This wave function has been self-consistently obtained by
minimizing the ground-state energy and by satisfying sum rules of the dynamical structure

function; in addition, it gives values for the ground-state energy, the staggered magnetization,

and the spin-wave velocity in good agreement with the results of cther calculations. The values
of the cumulants obtained by our variational Monte Carlo calculation, when extrapolated to
the thermodynamic limit (using finite-size scaling forms suggested by spin-wave theory), are
My = 3.69J and M, = 0.72J, in good agreement with those obtained by series expansion.
Taking a value of J = 1000 cm™?, our results also agree with the experimental data on LayCuOQj.

I. INTRODUCTION

The isotropic two-dimensional (2D) spin-% antiferro-
magnetic Heisenberg model {AFHM) is under intense
theoretical investigation since a suggestion was madel!
that quantum spin fluctuations in the copper oxide planes
of high-T, materials may be responsible for their super-
conductivity. This mode! can be also obtained from Hub-
bard models in the strong-coupling limit and at half fill-
ing and describes the dynamics of the spin degrees of
freedom of these copper oxides in the undoped insulat-
ing phase.? The temperature dependence of the correla-
tion length as well as the dynamical correlations obtained
from this model and the equivalent nonlinear o model®4
are consistent with neutron scattering experiments® done
on the undoped Lap;CuQy4 by choosing a value of the an-
tiferromagnetic coupling J ~ 1000 cm™1!.

In this paper we study cumulants of the intensity dis-
tribution of the Raman scattering from the undoped insu-
lating quantum antiferromagnet LaaCuQOy4. The in-plane
quantum spin excitations are believed to be the reason for
the broad peak around 3000 cm™! in Raman scattering
experiments.® The ratio of the width of this peak to its
averaged frequency, if calculated using the spin—% AFHM
on the square lattice, is parameter free and provides a
further test of the theoretical model underlying the spin
fluctuations in the materials. However, this ratio cal-
culated using conventional spin-wave theory,” even with
magnon-magnon interaction being taken into account, is
still nearly three times smaller than that observed experi-
mentally. Therefore, other approaches beyond spin-wave
theory which could capture such fluctuations are needed
to study whether or not the magnitude of the width can
be accounted for by such a rather simple model.

The series expansion method, which considers the Ising
part of the Heisenberg Hamiltonian as unperturbed and
the z-y part as a perturbation, has been used to cal-
culate the various frequency moments of the Raman
spectrum,® and a good agreement with experimental data
was achieved. The uncertainty in the extrapoclation pro-
cedure, used in the series expansion in order to reach the
isotropic limit, is not entirely known due to the fact that
the series converges quite slowly. This concern is also
brought up in a recent exact diagonalization calculation®
of the same quantities, in which the first moment is 11%
smaller than that found by series expansion. The ex-
act diagonalization is performed only on a 4 x 4 lattice
and so it is not clear whether this discrepancy ic due to
finite-size effects or due to systematic errors in the series
expansion calculation. Thus, additicnal calculations that
support the results of the above two methods and clarify
the situation further are desired. A

In this paper we shall use a variational ground-state
wave function of the spin—% AFHM to calculate the
first two cumulants of the Raman scattering intensity.
This variational wave function has a form similar to
those studied earlier by Marshall,!® Horsch and von der
Linden,'! and Huse and Elser.!? It is characterized by an-
tiferromagnetic long-range order and takes into account
spin-spin correlations. More recently, it has also been de-
rived by an analytical approach!® and we have optimized
it by a variational Monte Carlo (VMC) calculation,** in
which the long-range spin-spin correlations are taken into
account in such a way that the wave function is con-
sistent with the long-wavelength spin-wave excitations
and the sum rules of spin dynamical structure function.
The ground-state energy, staggered magnetization, and
spin-wave velocity have been calculated!'® using this wave
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function and agree fairly well with those obtained from
other numerical methods.!® Thus, the calculated values
for the ground state properties of the spin—-;- AFHM on
the square lattice are reasonably accurate and such a vari-
ational wave function may be used to provide an indepen-
dent calculation of the moments of the Raman scattering
intensity.

The formulation and the way in which we implemented
the variational calculation are expiained in the next sec-
tion. In Sec. III, the linear spin-wave'® (LSW) theory is
used to calculate the moments in order to have a qualita-
tive understanding and obtain the finite-size dependence
of the cumulants in the thermodynamic limit. The results
obtained using the VMC method and their comparison
with other calculations are given in Sec. IV.

II. FORMULATION

The Raman spectrum due to the interaction of the spin
pairs with light is described by the following effective
Hamiltonian:”

Hp = Z(E, <635 )(E; - 6i5)8; - S5, (1)
<if>

where E; and E, are the electric-field vectors for the in-
cident and scattered photons. §;; is a unit vector linking
sites ¢ and j and we have included only interactions be-
tween nearest neighbors. The scattered photon intensity
distribution, at zero temperature, is given by the Fermi
golden rule

po= (Yol H|Wo) = > (Tolb;itx(bjj1x — bjj4y)I¥o),

t,J
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Iw) =) (Yol HrIUA)*6(w — (Bn ~ Eo)),  (2)

where |¥,,) corresponds to the nth eigenstate of the sys-
tem (target) with eigenvalue E,. It is clear that the
calculation of the line shape I(w) requires a full knowl-
edge of the excited states |¥,). However, the spectrum
moments p, defined below are quantities related to the
ground-state properties only. We define

Prn= /w”I(w)dw. (3)

The cumulants are defined as
(M) = [ = MY 1) d/ o, @

for n > 1, with M, = p1/po and their values for n = 1,2
have been measured using Raman scattering techniques®
on undoped LayCuQy. Different cumulants are sensitive
to different parts of the frequency spectrum and therefore
contain complementary information.

We will use the 2D spin-% AFHM given by

H=J ) SiS; (5)

<ij>

to describe the dynamics of spin degrees of freedom of
the undoped material. Here S; is a spin—% operator and
the summation is over all nearest-neighbor pairs. After
some algebraic manipulations, we write the first three
moments as

= %(‘I’OI[HR: [, He]||¥o) = % Z(‘I’0|[[bi,i+fc: bj,j+y], bz,z+:“c]|‘1’o>, - (6)

4,4

" pa=—(Wol[H, Hr]2[¥o) = =7 > (Wo|[b; 545, bj.j+5171¥0),

4.j

where the bond operators b;;;3 and b;;.¢ denote
S: - Si4% and S; - S;,y, respectively. We have consid-
ered only the scattering geometry of the B;, symmetry,
i.e., the incident light E; and the scattered light E, are
polarized along the direction having an angle 45° with
respect to the X axis. The unit vectors X and § are along
the directions of the Cu—O bond in the plane. We used
the fact that the expectation values of b; ;4 4b; ;1% and
b; i+9b; ;49 are equal due to the rotational invariance of
the ground-state wave function in the coordinate space.
Because we are merely interested in calculating p; /po and
p2/pq, the amplitudes of E; and E, are set to unity in
the above expressions.

A good approximation to the ground-state wave func-
tion of the AFHM was found in Refs. 13 and 14. This
wave function can be written in the following form:

o) = exp(—5 T 6757 )18), ™

i<y

where
1 [
9= a7 2Dk ®

where N is the number of sites and the sum is over all
possible spin configurations c of the lattice and L(c) is the
number of “up” spins in one sublattice contained in the
configuration ¢; 67 is the spin operator with eigenvalues
+1 for up spins and —1 for down spins. The state |¢)
is the Néel state along the % axis in spin space, because
it can be written as [¢) = [[.c 4 |r,+) [1.ep Ir,—) where
the states |r,+) and |r, —) are the eigenstates of SF and

A and B represent the two sublattices. The function u;;
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was obtained by “paired-magnon analysis”® and is given
by

1 /1 + 7 ) fk-(ri—rs
PMA = — ) — 1] etk (s "J), 9
i N K ( 1— 7 ( )
where vic = $[cos(kz) + cos(ky)]. The wave function

(7) has the Jastrow form which takes into account the
spin-spin correlations arising from the constraint that
two spins cannot occupy the same site, analogous to the
hard-core interaction in the liquid *He. It has been op-
timized by a VMC calculation,'* and the optimal values
of variational parameters are u(1,0) = u(0,1) = 0.612,
u(1,1) = 0.34, and the long-range tail u;; = 1.22u{M4
for |rsj| = /(zi — z5)2 + (y: — yj)? > 2; the factor 1.22
makes the wave function consistent with sum rules for
J

P(e)=exp | — Zu;jaf OLAGEE

i<j
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the spin dynamical structure function. The values of
the ground-state energy per site, the staggered magne-
tization, and the spin-wave velocity obtained with this
wave function are —0.6637(2),0.349(2), and 1.22v/2Ja,
respectively, and they are in good agreement with other
calculations.? This optimal wave function will be used
next in the calculations of the moments of the Raman
spectrum given by Egs. (6).

Let us consider the calculation of the nth moment p,.
Using the variational wave function (7), we obtain

Pn : Z P(C)Q(C)
YO

(10)

where

(11)

Q6) = S5O exp (15wt (o3 (0 - ) (€12l (12)

c! i<j

In our case Q represents the operators which are com-
binations of bond operators and determine the moments
in Eqgs. (6). Following standard Monte Carlo techniques,
we first need to generate spin configurations ¢ distributed
according to the probability function P(c). The expec-
tation value of Q(c) is then obtained by the summation
over such configurations. For a given configuration c,
one needs to perform the summation in (12) only over
those configurations ¢’ that give nonzero matrix elements
(1Qle).

To calculate the matrix elements, we make use of dia-
grammatic representations and consider the symmetries
of the ground-state wave function in order to simplify the
algebra. The basic element of these diagrams is a bond
with an index i, which connects two nearest-neighbor
sites and represents the bond operators b; ;, ¢ and b; ;¢
for a horizontal and vertical bond, respectively. A sum-
mation over all lattice sites 7 is implied. Therefore, each
term contributing to p, is a sum of expectation values of
products or multicommutators of such bond operators.

In Figs. 1(a)-1(c), we give the terms contributing to
po, p1, and pa, respectively. Each term in Fig. 1(a) is an
expectation value of the product of two bonds. In Fig.
1(b) each term refers to the average value of a double
commutator of the form [[&, ﬁ], 7], where § is the vertical
bond and & the one connected to the vertical bond. Each
term in the second moment py consists of four bonds, and
is expressed as the product of two right angles [see Fig.
1(c)]. Each such right angle is a commutator of two bonds
of the form [b; ;2,b; ;4¢], where the horizontal bond is
always the first and the vertical bond second.

The symmetries of the wave function (7) greatly reduce

{a)

1 =2 .._.+l._.+ + +l )
? (Q——l &——o:_—-[—- L—o—a .

1

A , (b) _
j
p2=4( ><] +2| x‘_‘[ +[__.>< l)-
1 j 1 7 1
(C) . .
{d)
?_._.x[=4 +g[——ox[

J t 7

ke)

FIG. 1. (a)-(c) Diagrammatic representation of the first
three moments; see text for details. (d) Due to rotational
symmetries these four diagrams give the same contribution.
(e) The second term of po can be split into four connected
bonds (giving the same expectation value) and a product of
two disconnected bonds. The indices 1’ and j/ imply summa-
tion over the lattice with the restriction that the two bonds
have no common site.
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the number of diagrams to be computed. For example,
the probability function P(ec) given by (10) is invariant
under certain transformations of the configuration ¢. Di-
agrams which differ by rotations give the same contribu-
tion to the moments, as illustrated in Fig. 1(d). One has
to take particular care when calculating po and po, which
involve connected as well as disconnected bonds. Each
term in Fig. 1(a) and 1(c) can be split into connected and
disconnected bonds, as shown in Fig. 1(e). The number
of the connected diagrams to be calculated can be again
reduced using such symmetries, as demonstrated in Fig.
ie).

(’_[)‘he moments pg, p;, and pg are proportional to the
number of sites N in the N — oo limit. Let us con-
sider pg, for example. Due to the translational invari-
ance, the summation over 7,j can be replaced by a fac-
tor N times the sum over all possible values of r;;.
The expectation values of b; ;12b; ;12 and b;;45b; i 15,
when |r;;| is large, become (Wolb; ;4 %|%o0){¥olb; ;+%[%o)
and (¥olb; ;4.2|%0)(Yolb; ;+5/%o), respectively. Since
the symmetries of the wave function imply that
(Tolb; j+2/%0) = (Wolb; j+3|%o), these pieces cancel at
sufficiently large |r;j|. There are the remaining parts for
finite values of |r;;|, which when summed over all values
of r;;, give a contribution of order unity.

III. MOMENTS FROM SPIN-WAVE THEORY

To first obtain a qualitative picture, we present here
the optical moments of the spin—% AFHM using lin-
ear spin-wave theory.!® By means of Holstein-Primakoff
transformation we can express the Hamiltonians A and
H in terms of two kinds of bosonic spin operators for
each sublattice. We keep only quadratic operator terms
and perform the Bogoliubov canonical transformation to
rewrite these Hamiltonians using magnon creation and
annihilation operators. The spin-wave ground state is
used to evaluate the expectation values defined in Egs.

(6). We find

cos k, — cosk,)?
pg,sw — Z ( )
k

41-0)
/ 2
LSW — \COSkz ot Cosky)
zk‘ VI-%

p5SVW = Z4(coskx — cosky )?J 2.
k
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0.352488

3.8098458

M,m" MY

2

3.8098453 .
0.352485

1/N?

FIG. 2. The first two cumulants obtained from the LSW
theory calculation. The open circles and squares are the val-
ues of M) and M; for lattices of sizes ranging from 120 x 120
to 400 x 400. The left ordinate is scaled for MW and the
right ordinate is for M¥5W. The solid lines are straight joining
of these points. This demonstrates that the finite-size correc-
tions to M; and M> are of order 1/N? within LSW theory.

These equations hold for the By, symmetry only. In lat-
tices of finite size, k takes discrete values and the sum-
mation over k can be carried out numerically for large
size lattices so that the leading finite-size corrections can
be found. Figure 2 demonstrates that the first two cumu-
lants MW, MW are linear functions of N~2 at large
N. The values extrapolated to infinite N are given in
Table 1.

Equations (13) can also be derived using a somewhat
different formalism. Elliott and Thorpe’ applied the
Green’s function technique to study the AFHM and used
the Néel state as the approximate ground state to eval-
uate the inhomogeneous term of the equation of motion.
We find that the expressions for the moments obtained
from their unperturbed Green’s function are different
from the above expressions obtained from LSW theory
by a factor of 1/4/1 — y2. However, when we used the
spin-wave ground state to calculate the inhomogeneous
term, we found the same equations as (13).

Taking the magnon-magnon interactions into account
in the Green’s function approach, Elliot and Thorpe
found that the line shape changes to a distribution

TABLE I. Comparison with other calculations. Experimental values are taken from Ref. 8
M1 M2 . M2 /Ml
Néel ground state : 4J 9 ' 0
LSW 3.809845J 0.352486J 0.093
Exact diagonalization (4x4) 3.244J 1 0.797J 0.246
Series expansion 3.58(6)J 0.81(5)J 1 0.23
This work 3.69(2)J 0.72(5)J 0.20(1)

Experimental values

3700(50) (cm™

D) 1050(100) (cm™) 0.28
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peaked around 2.7/ and the ratio of the second cumulant
to the first one is 0.11, which is not significantly differ-

ent from the LSW value of 0.09 and nearly three times-

smaller than the experimental value® of 0.28.

IV. VARIATIONAL CALCULATION

Our numerical calculations were performed on square
lattices of sizes up to 16 x 16 with periodic boundary con-
ditions. Note that the Heisenberg Hamiltonian conserves
the total magnetization, which is zero® for the case of the
ground state, and the calculation is restricted to this sub-
space. We checked our program by setting u;; = 0 in the
probability function (10), which means that all the con-
figurations were sampled with the same probability. This

3.9

(a)

38 B T~ ~-o

M,

35 | | { 1
0.0004 0.0008 0.0008

1/N®

M

. vMC
L . Exact >x
Y- J TS PSS SE RIS RS
0 0.001 0.002 0.003 0.004
1/N?
FIG. 3. (a) The first cumulant M; is plotted as a func-

tion of N=2 for square lattices of N = L x L spins. The
open squares are the results of VMC and the open circles are
the results of LSW theory. The lattice sizes correspond to
[=6,8,10,12,16. Both solid and dashed straight lines are ob-
tained by a least-squares fitting. (b) Comparison with other
calculations. The result of the exact diagonalization on the
4 x 4 lattice is shown by the cross and the result of the series
expansion is shown by the solid circle. The dashed and solid
straight lines are the same fitting lines as in (a).
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corresponds to the Néel state along the % direction in the
spin space and the calculation of the moments can be
carried out analytically giving po = N/8,p1 = N/2, and
p2 = 2N. Our program reproduces these values within
error bars.

In Fig. 3(a) we present the numerical values of the first
cumulant M; on different size lattices. The leading finite-
size correction is of order N~2 as predicted by the LSW
theory discussed in the previous section. The results ob-
tained by our VMC calculation are shown by the open
squares. The solid straight line is a least-squares fitting
which gives M; = 3.69(2)J in the limit of infinite N. The
fit includes the results for lattices of sizes 62,82, 102,122,
and 162. In Fig. 3(b) we compare our VMC results with
those obtained by the exact diagonalization® on a 4 x 4

()

3 08 |
04 e e = T T T TR
too—® — =~ 7
-\ .
I 1 ]
-0 .. 0.0002 0.0004 0.0008 0.0008
1/N?
1.50
1.25
1.00
LJ
=
0.75
0.50
0.25
0 .. 0.001 0.002 0.003 0.004
1/N?
FIG. 4. (a) The results for the second cumulant M as

a function of N~* obtained with the VMC calculation are
shown by the open squares fitted by a solid straight line. The
results obtained by LSW theory are shown by the circles fitted
by a dashed line. The lattices used are L x L with 6 < L <16
(b) Comparison with other calculations. The result of the
exact diagonalization on the 4 x 4 lattice is shown by the
cross and the result of the series expansion is shown by the

_solid circle. Notice that the values obtained on a 4 x 4 lattice

from both VMC calculation and LSW theory are far off the
fitting lines.
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lattice and by the series expansion.® The solid straight
line is the same as that of Fig. 3(a), namely, obtained
by excluding the result for the 4 x 4 lattice from the fit-
ting. Our value for M; on a 4 x 4 lattice is 3.24J + 0.01
which agrees with the value of 3.244J of the exact di-
agonalization (cross). Thus it can be seen that M; has
considerable finite-size corrections when calculated on a
4 x 4 lattice. Our value extrapolated to the infinite N
limit is in reasonable agreement with the result of the
series expansion [solid circle in Fig. 3(b)]. Therefore, we
conclude that the earlier difference between series expan-
sion and exact diagonalization calculations mentioned in
the Introduction is mainly due to the finite-size effects in
the latter calculation.

The magnitude of the second cumulant Ms, which
measures the width of the peak in the Raman scattering
intensity, displays the role of the quantum spin fluctua-
tions; Mj is zero when calculated using (6) and the Néel
ground state to obtain the expectation value. Figure 4(a)
shows the results for M3 obtained by our VMC calcula-
tion (open squares) and LSW theory (open circles). The
extrapolated values are given in Table 1. The error bars
in this case are larger than in the case of M;, mainly be-
cause of the error propagation from all three moments.
In Fig. 4(b) we compare the results of our VMC calcu-
lation to those obtained by the exact diagonalization on
the 4 x 4 lattice and by the series expansion. We did not
include the point obtained on the 4 x 4 lattice in fitting
the data, because it falls far off the fitting line. This be-
havior also appears in the LSW calculation shown by the
open circles fitted by the dashed line.

The comparison with other calculations in Table I indi-
cates the good agreement between the VMC results and
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those found by the series expansion method.® Compar-
ing our value for My = 3.69(2)J and the experimental
value listed in Table I, we obtain the antiferromagnetic
exchange parameter J = 1000 & 50 cm™!, indistinguish-
able from the value obtained by the series expansion
within the errors. On the other hand, in order to fit
the temperature dependence of the in-plane spin correla-
tion length of stoichiometric LayCuO4 (the sample with
Néel temperature 245 K) from the neutron scattering ex-
periment, a value of J = 1030 cm~! was used? in the
quantum Monte Carlo calculation of the spin—% AFEM
on the square lattice. The same value of J can be used
to calculate the spin-wave velocity given by 1.22v/2J a,
which gives ¢ ~ 0.81 eV A, in good agreement with the
value inferred from the neutron scattering experiment.!”
The consistency of these results indicates that the spin-% :
AFHM may be relevant to the physics behind the spin
fluctuations in the undoped LagCuQy4. Lastly, we believe
that the variational wave function (7) captures the basic
nature of the spin fluctuations in the Heisenberg model.
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