PHYSICAL REYIEW B

YOLUME 43, NUMBER 13

Quasihole excitation in a quantum antiferromagnet:
variational Monte Carlo calculation

Massimo Boninsegni and Efstratios Manousakis
Department of Physics, Center for Materials Research and Technology
and Supercomputer Computations Research Institute,

Florida State University, Tallahassee, Florida 82806

{Received 6 September 1990)

We study a single quasihole excitation in a quantum antiferromagnet using a variational wave
function that includes spin-spin as well as spin-hole correlations. The wave function can be cast
in the form of a complex correlation operator acting on a Marshall-type wave function for the
spin background. Such a correlation operator, featuring momentum-dependent spin-hole cor-
relations, is shown to correspond to a coherent local rotation of the spins, which can be also
interpreted as a “spin-backflow” current, analogous to the Feynman-Cohen backflow current in
helium liguids. The variational Monte Carlo method is used to calculate the hole excitation
spectrum on a square lattice for the ¢-J model with this wave function. Comparing our results
with available exact results on a 4 X 4 square lattice, we find qualitative and semiquantitative
agreement. We provide results obtained on much larger lattices. We find that the quasihole en-
ergy band attains its minimum at k = (%« /2, &7 /2) while the hole mass is strongly anisotropic
in different directions of k space. The quasihole excitation creates both a planar long—range
distortion of the antiferromagnetic (AF) moment of the background ém!(r — c0) ~ (k- r)/r?
and a ferromagnetic moment localized in the immediate neighborhood of the hole, pointing in
the perpendicular direction. The magnitude of the ferromagnetic moment depends on the mo-
mentum of the excitation, and at the minimum of the hole band only the long-range AF planar
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distortion is present.

I. INTRODUCTION

The nearly half-filled, two-dimensional (2D) Hubbard
model has been suggested’ as an appropriate starting
point for the study of superconducting copper oxides. In
the strong-coupling limit and at half-filling this model re-
duces to the spin- antiferromagnetic Heisenberg model
(AFHM). The effect of doping is the creation of mobile
holes in the CuO3 planes, and one considers the strong-
coupling limit of the Hubbard model in the nea.rly half-
filled case. In this limit one finds that the spm-— AFHM
is one piece of the Hamiltonian and the hole rnotlon can
be described by including hole-hopping terms such as the
first term in the following model:

Hi;=—t E(CL,CJ-U +He)+ J, Z(sfs — $Rif;)
{if)o {s3)
+5Jey D (stsy + 57 sF), (1)
{i7)

where J; = Jzy = J and ¢; o is a hole creation oper-
ator and ¢ the electron hopping matrix element. The
strong on-site Coulomb repulsion is taken into account
by restricting the action of the Hamiltonian operator in
a subspace of the Hilbert space having states with singly
occupied sites. The Hamiltonian (1), now known as the
“¢-J model,” has received significant attention by vari-
ous authors because it can be derived from more realistic
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models which account for the detailed chemical structure
of the copper oxide planes.? It is worth mentioning that in
the derivation of (1) from the Hubbard model one also en-
counters a three-site interaction term which permits the
hole to hop to a next-nearest-neighbor site: such a term
is neglected in the present paper; here, we only study the
t-J model and we postpone studies of its extensions until
the future. The #-J model, in the undoped case, reduces
to the spin—lz- AFHM which has proven quite successful
in explaining certain magnetic properties of the copper-
oxide planes of the undoped materials.® Recent analysis
of the NMR measurements suggests? that the copper ox-
ide materials can be described by a one-component anti-
ferromagnetically correlated Fermi liquid, which is con-
sistent with starting with Hamiltonians such as (1).

Several attempts have been made to study the 2D
t-J model in the presence of one or two holes, by using
both analytical and numerical techniques. The problem
of pairing of two holes has been studied on a small-size
cluster,® by exact diagonalization; it was found that a
range of t/J exists for which pairing, induced by an-
tiferromagnetic (AF) spin correlations, might be possi-
ble. Much effort has been devoted in order to achieve
a thorough understanding of the single-hole and related
problems.>—19 Some information has been produced®—9
about certain features of the single-hole dispersion rela-
tion and the spectral function, where a quas1part1cle peak
has been found.
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The variational approach, which overcomes the limita-
tions of dealing with small-size lattices, may provide both
an analytical understanding of the nature of the correla-
tions introduced by the hole and a deeper insight on the
possibility of hole pairing; in addition, a good variational
wave function can be used further as a guiding function
in a Green’s-function Monte Carlo simulation, to obtain
a more accurate estimate of the various expectation val-
ues. In this work we carry out a variational Monte Carlo
(VMQ) calculation for the single-hole energy band. A for-
mal analogy is used between this problem and the one of
the motion of an impurity in a Bose fluid, with two-body
interactions among the bosons and between the impurity
and the bosons. In such a context, a variational wave
function can be written down with all possible two-body
correlations, including a backflow term analogous to the
one introduced by Feynman and Cohen'! to study the
problem of a 3He impurity in liquid 4He. Translated into
spin language, the trial wave function can be obtained
by acting on a Marshall-type antiferromagnetically cor-
related state with a complex spin-hole correlation opera-
tor. The part of this operator deriving from the backflow
term generates a “distortion field,”® which originates at
the position of the hole and decays as (k -r)/r? far away
from it. Upon comparing our variational results with ex-
act ones for the 4 x 4 lattice, we find that certain broad
features of the hole excitation spectrum are reproduced,
and the variational estimate of the hole binding energy
is accurate for ¢/J < 0.5. ) , ,

Several of our conclusions agree with those of other
works obtained with different methods.®:8:2 We find that
the quasihole excitation creates a planar long-range dis-
tortion of the antiferromagnetic (AF) moment of the
background émf(r — o0) ~ (k-r)/r? and a ferromagnetic
moment well localized in the immediate neighborhood of
the hole, both depending on the momentum of the exci-
tation. The plane of the distortion in the spin space is
parallel to the direction of the staggered magnetization
of the square lattice, while the ferromagnetic moment is
perpendicular. At the minimum of the hole band, which
occurs at k = (7w /2, w/2), there is only the long-range pla-
nar AF distortion. The hole band is strongly anisotropic
in different directions of k space; we find that the effective
mass of the hole is much smaller in the direction (0,0)
to (7,7) compared with the hole mass in the direction
(0, w) to (=,0).

In Sec. II, we formulate the problem in our convenient

language and we discuss the formal analogy of this prob-
J
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lem with the problem of an impurity moving in a Bose
fluid. In Sec. III, we study certain analytical results ob-
tained by including only hole-spin correlations. In Sec.
1V, we provide results obtained with the full wave func-
tion and the VMC technique. Finally, we summarize our
results and discuss how to improve the variational calcu-
lation for large values of ¢/J.

II. FORMULATION

First, we shall outline a representation where one finds
an interesting analogy with the physics of Bose fluids.
The analogy of hard-core Bose fluids with spin systems
was pointed out by Matsubara and Matsuda,!? who have
shown that liquid #He, when approximated as a quan-
tum lattice-gas model is equivalent to the ferromagnetic
spin—% Heisenberg model. Here, using a unitary trans-
formation of the basis, we make use of this analogy for
quantum antiferromagnets.

Let us first consider the case of no hole, i.e., the spin——é—
AFHM. The eigenstates of this model can be expressed

=3

r:;,rs,.. Iy,

¢(rlar2a sy rNu)

x (=), rg, ... xn,), (2)

where the configuration |¢) is labeled by the location of

the up spins, 7
Iri,ra, ... en,) = 8 SE, - sy [F); 3)

|F) is the ferromagnetic state with all spins “facing”
down and N, is the number of up spins. The am-
plitude ¥(ri,r2,...,rN,) is symmetric under exchange
of any two coordinates r;,rj, as it can be easily in-
ferred from the commutation rule [sf,st] = 0. More-
over, ¥(...,r;,...,r5,...) = 0, if r; = r; for any pair
i,j as a result of (s¥)?|F) = 0. Spins pointing up
can therefore be regarded as particles, namely “hard-
core” bosons. The phase (—1)X{¢) is separated from
the amplitude ¥ in order to have a non-negative ¢ for
any ground-state configuration.!® L{c) is the number
of up spins in one sublattice. In this representation,
it is straightforward to show that the eigenvalue prob-
lem, H|¥) = E}¥), reduces to a difference equation, for
the amplitude ¥(r1,rs,...,ry, ), identical to the many-

_particle Schrédinger equation on a square lattice:

N :
—3J EV?¢(r1,r2,...,rNu)+ Z Vij¥(ri,r2,...,rN, ) = €¥(r1,ra, ..., N,) 4
i=1 1<i<i <N, ,
where

VIp(rs, oyt BN = D [W(E1, . 6, en) — (L, T E)]
&
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is the Laplacian operator on the discrete square lat-
tice and § is a vector of unit length that connects the
site located at r; with each of the four NN. Here, ¢ =
E— %N J +3N,J with E being the ground-state energy
eigenvalue of the Heisenberg model. The “particles” cor-
respond to up spins and the wave function  is symmetric
with respect to “particle” permutations; hence, this is a
quantum lattice gas of bosons with “mass” m = 2/J (we
use units in which a=1 and A=1) that interact via a pair
potential V;; having an infinite on-site repulsion, Vi3 = J
if 7,7 are NN, otherwise V;;=0.

It is known that the ground state of a Bose liquid has
a broken symmetry (condensate) which in the magnetic
language corresponds to AF long-range order (LRO). A
simple and nontrivial ground-state wave function which
takes into account short-range correlations due to the
existence of the hard-core [V (r = 0) = oo is the Jastrow

wave function
II s (5)
1<i<j<N,

1/)0(1‘1,1'2, .- .,rN“) =

where f;;=0 for i = j and fi; > 0 for i # j. Itis
customary to write

fij = el (6)
where u;; = u(r;—r;). Substituting the number operator
counting the “particles” (up spins) by s + % we can go

back to the spin variables. We obtain the Marshalll3
state

1
o) =D (1) Dexp -3 > wijsist | o), (M
¢ i<j
where the sum now runs over all lattice sites. If we extend
the sum not only over those configurations with N, up

spins but over all possible configurations, then the state
(7) takes the following form

1 a2 4
[tho) = exp -3 Zu;j 87 8%
i<j

|=) - (8)

|z) is the Néel state with antiferromagnetic order in the
z direction

lz) =TI + &I ]I - &) ©

ic4 fe—

where
B)e = L (1Y, ).

i.e., they are eigenstates of 5§7. The variational state (8)
features a reduced antiferromagnetic order. A straight-
forward calculation yields (8¢) = (§#) = 0 and (&%) =
+mt, where m! is < 1 and depends on the function u. If
we restrict the sum in (7) over configurations with zero
z component of the net spin (i.e., N, = N/2), we find
that (8%) = (8Y) = (8%) = 0; however, each of the two
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correlation functions (575%) and (5Y8Y) at large distances
approaches the value 1(—1)"*im!? while < 8787 > ap-
proaches zero. Therefore, even though there is no well-
defined direction for the staggered magnetization, there is
still long-range antiferromagnetic order in the z-y plane.

The elementary excitations in the Bose system are den-
sity fluctuations (phonons in the long-wavelength limit)
which in the magnetic system correspond to spin waves
and the Bose condensate to antiferromagnetic long-range
order. Chester and Reatto!* have shown that the zero-
point motion of the long-wavelength modes of the Bose
system (zero sound) gives rise to a long-range tail in the
Jastrow wave function. For a square lattice spin—% quan~
tum antiferromagnet we obtain u(r — oo) = ¢/Jar, ¢
being the spin-wave velocity. The optimization of the
Jastrow wave function has been numerically carried out
by Liu and Manousakis,’® who used the values of u;; for
the first few neighbors as variational parameters and de-
termined the long-range part by satisfying sum rules.

Let us next consider the Hilbert space of all possible
states of the system, with N, up spins and one hole. A
basis vector can be written as |R,r1,r2,...,£n,), With
R # r;,r2,...,rN,, where R is the position of the hole
and ry,re,...,ry, are the positions of the N, up spins.
More precisely,

IR,I‘l,l‘g,...,l‘Nu) =S;18F2'.'si':Nu |R7F)7 (11)

where the reference state |R, F') is the “down” ferromag-
netic state with the hole at R. The most general eigen-
state of (1) having N, up spins can be written as

= >

R,ri,rz,...,rN,

(—1)L(C)‘I‘(R: F1,F2,... arNu)

X|R,1‘1,I‘2,...,1‘N1‘). ’ (12)

The phase factor (—1)*(9) is defined as in the no-
hole case. In this representation we can write down
the eigenvalue equation H¥ = €¥ for the function
¥(R,r;,rs,...,rN, ), With

N‘u
H =—t6%—-}£JZ$’f; + Z V(x; —r;)
i=1 1<i<i<Ny

N,
+ X;U(ri ~R)—t {}:; P(ri,R)6(rry,  (13)
= r{

where ¢ = E+3J N, —4t, F being the ground-state energy
eigenvalue of (1) and P(x,r') being a two-“particle” ex-
change operator, whereas 8(r,r) is equal to one for nearest
neighbors and zero otherwise. The first two terms of the
Hamiltonian are kinetic-energy terms, one for the hole,
whose “mass” is my = 1/2¢, the other for the bosons in-
troduced above, whose “mass” is my = 2/J. V;; has been
defined before and U; is the interaction potential between
a hole and a boson, featuring an infinite on-site repulsion
and it is equal to J/2 for nearest-neighbor sites and zero
otherwise. Apart from the fifth term, that we shall exam-

ine below, (13) is the lattice version of the Hamiltonian
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for an interacting boson gas with an impurity, in this case
the hole. This is analogous, for instance, to the prob-
lem of a 3He atom in liquid *He. The fifth term of the
Hamiltonian (13) represents the exchange taking place
between the impurity and a nearest-neighboring boson.
This exchange term expresses the possibility for the im-
purity and a nearest-neighboring boson to interchange
without involvement of a third or more particles. Be-
cause of that, unlike the case of 3He atom inside a liquid
“He background, hole motion inside the boson “Auid”
may not necessarily cause a rearrangement of the fluid
itself in the vicinity of the moving hole (backflow). A
variational ansatz for the wave function describing the
motion of an impurity inside a Bose fluid can be obtained
as a generalization of the state (5), allowing for two-body
boson-impurity correlations:

\I’T(k) = TR exp —Z[i¢k(rj - R) -+ /\k(r,- — R)]
J

X exp —%Zu(l‘i—rj) ) (14)

i<j
where u accounts for the hard-core repulsion between
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pairs of bosons, as in the no-impurity case, and the term
A +idy describes two-body boson-impurity correlations.
The imaginary part can describe “backflow” effects, as in
the Feynman-Cohen treatment of the problem of a 3He
impurity in liquid “He;!! in that context, @, refers to the
collective motion of 4He atoms which move out of the
way, in order to make room for a 3He impurity to pass
through, filling the empty space it Jeaves behind. Due
to this effect, the 3He particle embedded in liquid *He
has an effective mass which is larger than its true mass.
Mathematically, the form of the function ¢x(r; —R) can
be determined by imposing on the wave function (14)
the condition that it give a divergence-free current when
plugged into Eq. (13). Upon paralleling the calculation
outlined in Ref. 10, we obtain the large-distance behav-
jor of ¢u(r), as o (k -r)/r?, in the low-density limit,
that is, when the number of bosons (spins pointing up)
is small compared to the number of empty sites (spins
pointing down), or, in other words, when the system has
a large negative z component of the total spin (see the
Appendix). We can now go back to spin variables, by
using the identity A(r) = 3% + %, where #(r) is the boson
number operator at lattice site r (1 if there is an up spin,
zero otherwise); ¥r(k), within a multiplicative constant,
is given by

[¥r(k)) = Z(_I)L(c)e—ikﬁ exp (—- Z[)\k(r,- —R) + iy (r; — R)]s;’fi> exp —-;— Z u(r; —rj)si st | [R,¢),

R,c

re,rj

(15)

where the sum over i and j now runs over all lattice sites. As in the no-hole case, if we allow the sum in the state
(15) to run over all possible configurations rather than just those with a fixed number of bosons (i.e., with a fixed
value of the net z component of the spin), then we can express the state as

[T (k) = Ze—ik-R exp (_ Z[/\k(ri —R) + igu(r; — R)]§ﬁi) exp —% E u(r; —r;)87, 5 | IR, 2},

2

where

IR, 2) = []) + &) ]| — a):/R).
iet ie—

The states |+a); have been defined before, and |R) refers
to the vacuum at the site R,; the two products run over all
lattice sites except R. As in the no-hole case, the basic
difference between the states (15) and (16) is that the
latter features a well-defined direction of the staggered
magnetization.

The wave function (15) ignores physical processes aris-
ing from multiple hole hops. In our formalism, such
processes appear as hole-spin exchanges and can be in-
cluded by appropriate modification of the correlation op-
erator acting on the Marshall state with the mobile hole.
Such processes are known as “strings” of overturned spins
which follow the path of the hole in the Brinkman-Rice
approach; such an approach, however, neglects the role

(17)

(16)

ri,l‘j

- ;

of quantum spin fluctuations. Thus, we expect our wave
function to give unsatisfactory results for the hole energy
at large t/J, where hole-spin exchange becomes impor-
tant. The wave function can be improved by modifying
the correlation operator; this is discussed to some degree
also in Sec. IV.

III. IGNORING BACKGROUND
CORRELATIONS

If one sets u=0 in the state (16), the variational prob-
lem can be solved almost analytically, and this provides
further insight. We shall see that the A\, and ¢y corre-
lations, which can also be interpreted as local spin ro-
tations, are necessary in order to relieve the local spin
environment from the incoherence created by the hole
motion. Let us consider the state (16) and set u=0:
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[@o(k)) = Z e™™ ™ T Ix(r))= (18)
Rd: ri (#R)
where
Ix(r:))x = A, di)x = exp[—(A; + id;)32 ]l:i:x),, (19)

and | & £); are eigenstates of §7 given by Egs. (9) and
(10) and the functions A; and ¢; are abbreviations for
Ak(r:i — R) and ¢y (r; — R), respectively. We have sup-
pressed the index k for simplicity. The state x(x;) after
normalization can be expressed as

bx(r:))z = |6F, ;) = exp(—1i0F; - o)

X exp(—iéigf.i)‘ + 5:)5, (20)
where o are the Pauli matrices and 7y

= (—sin¢;,cos ¢;,0). This state can be interpreted as
a local rotation of the spin vector which points in the £
direction by an angle ¢; around the positive z axis and
subsequently by an angle 8; around the vector #; out of
the z-y plane towards the positive direction. The angle
6?‘ is related to the parameter ); as follows:

8 =2 tan™! (tanh (%’-))
97 =—2tan™? (coth (1\2—’-)) .

When X; and ¢; are nearest-neighbor functions the
problem can be solved analytically. The wave function
(19) can be parametrized as follows:

Ix(r:))x = lpi, ¢:) = pil £ &) + /1 — p2ei| F &),
(23)

(21)

(22)

The states (23) and (19) apart from a multiplicative con-
stant can be made identical provided that the functions
Ai, ¢; pi, w; are related in the following way:

2p:3/1 — p? .
¢; =— tan™! (-&—2—1-—&- smw;) , (24)
2p£—1
. — p2 s
N=oaln | TE2AVIZpicoswi ) (25)
2 l—2p,-\/1—~p?cosw,-

In this form, the expectation value of the potential energy
(J term) is given by

(V)y=-2J pr + const , (26)

which is independent of w;. Therefore the relative phase
w; can be found by minimizing the hopping energy only.
Now, when a hole, in an antiferromagnetically aligned
spin lattice, moves to a nearest-neighboring site, it cre-
ates a state which is orthogonal to the original state. In
order to minimize the hopping energy, one has to allow
for maximum overlap between the initial and the final

state, and this can be achieved if the spins around the
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hole are in a nonpure spin state. It is straighforward to
see that the overlap between the state obtained by act-
ing with Hi-y on (18) and the state (18) itself attains its
maximum magnitude by choosing

ws=-k-§, 2n

where phase coherence is achieved. Choosing ps = p the
expectation value of the Hamiltonian (1) is obtained as

(Hi-7) = E(p) = —8tp"\/1 — p% — 6Jp” + const

and the optimal value of the parameter p lies in the in-
terval p. < p < 1 and depends monotonically on ¢/J
with p(t/J = 0) = 1 and p(t/J — o0) = p. = /7/8.
We further obtain E(t/J — co0) = —1.772t and tan ¢; =
VT/3sin(k-§), i.e., the maximum value of ¢ is somewhat
less that 45°. Smce pis close to 1 for small t/J the param-
eters (24), (25) can be approximated by ¢5s = Ao sin(k-§)
and As = Ao cos(k - §) where A, = 2p/1 —

One can also calculate the expectation values of the
NN spin operators

(28)

(58)e = £3(2° - 1), (29)
(s5)x =%p/1 — p?sin(k - §), (30)
(s5)2 = pv/1— p2cos(k - §). (31)

For large distances, the problem can be solved by as-
suming that A(r — o0) — 0 and ¢(r — o0) — 0 and ex-
panding the energy expectation value and keeping up to
terms quadratic in A, ¢ and VA and V¢. Minimizing the
resulting expression we find that the function A should
decay within a few lattice spacings from the hole, whereas
the function ¢ may have significant large-distance behav-
ior. Namely, the planar distortion survives at long dis-
tances from the hole, while the magnetization along the
direction orthogonal to the plane is confined within the
neighborhood of the hole. The minimization with respect
to ¢ gives V24 = 0 as r — co. ¢ can be therefore written
as a multipole expansion in which the Ith multipole coef-
ficient is proportional to 1/r!. If we impose the condition
that the large-distance symmetry of the wave function be
the same as at short distances then only odd multipoles
contribute. Upon retaining the dominant ! = 1 (dipole)
contribution, we can write ¢(r) = A(k)(k-£)/r.

Summarizing the results of this section, the opera-
tor exp[—idy(r)s?] rotates the spin, which lies on the
z-y plane in the uncorrelated state, by an angle ¢y
which behaves, at large distances, as (k - #)/r, whereas
exp[—Ak(r)5Z] generates the magnetization along the z
direction. This operation maximizes the overlap between
states where the hole i1s displaced by one lattice site by
the hopping term of (1).

IV. VARIATIONAL MONTE CARLO
CALCULATION

The state (15) with u # 0 is the variational state that
has been used in our variational Monte Carlo (MC) cal-
culation. We have obtained results with and without
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TABLE L
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Comparison between VMC and exact diagonalization results for the 4 x 4 lattice

case, at k = (x/2,7/2). The wave function has the restriction on the total S* = +%. The results
are given in units of J. The T" column reports the VMC expectation values of the hopping energy.

t/J E E (exact) T AE AFE (exact)
0.0 —16.661(02) —16.880 0 2.380(04) 2.349
0.20 ~16.768(02) —16.981 —0.177 2.273(04) 2.248
0.50 ~17.162(02) —17.465 —0.731(01) 1.879(04) 1.764
1.00 —18.019(03) —18.573 —1.837(02) 1.022(05) 0.656
2.50 —20.869(06) ~22.534 —4.852(06) -1.828(08) -3.305
5.00 —25.770(11) —29.719 —9.848(11) -6.729(13) -10.49

restricting the sum in (15) over configurations with fixed
total S*. We found the same optimal values of the vari-
ational parameters in the two cases. Restricting the sum
over configurations with S% = +m (or —m) produces a
finite-size correction to the hole binding energies at dif-
ferent k, that has the same sign as S* and scales as 1/N.
One can eliminate such a correction by allowing for con-
figurations with S* = £ m in the simulation. If this is
done, the optimal variational parameters are insensitive
to the lattice size. We performed VMC calculations on
several lattices with periodic boundary conditions. The
Metropolis algorithm with single-spin updates was used.
The function u was chosen to be the same as that de-
termined by Liu and Manousakis'®. We have found that
taking u to be a function of the distance between 7 and
J, e, u(r; —r;) = u(r), r = |r; — r;|, and

u(l) = o (32)
u(‘/i) =B, (33)
ur>vy =1, (34)

gives energies for the no-hole and one-hole state very
close to those obtained with the u determined in Ref.
15. This is a simpler trial function and it has the impor-
tant features, namely the long-range 1/r tail (consistent
with spin-wave theory). We have numerically found the
following simple parametrization of the functions ¢y (r)
and Ax(r):

for the short-range part, which is consistent with the so-
lution for u = 0 and small ¢/J. In fact the symmetries of
¢ and A, namely ¢y (—8) = —¢w(8) and A (—8) = Ak(6),
require only four parameters for each value of k. We have
found that allowing for all four parameters to vary inde-
pendently for each value of k, the best energies, within
our MC error bars, cannot be better than those obtained
with the parametrization (35) and (36). We further found
that the optimal values for A, are such that A, = —B,,
and by allowing for their values to be different we can
only gain small amounts of energy, lying within the er-
ror bars of the values summarized in the Tables I-VI. In
order to resolve the difference one needs higher precision
which requires computational resources much beyond the
ones available for this project, and for simplicity we took
A, = —B,, therefore keeping only one variational param-
eter. For distances larger than one lattice spacing away
from the hole we took

bulr) = Arsr, (37)

i.e., the expression for the dipolar backflow discussed in
Secs. II and IIT and derived in the Appendix. We found A
not to be significantly different from zero beyond nearest
neighbors.

In Fig. 1 we compare our results to those obtained by
numerical exact diagonalization for the hole binding en-
ergy on a 4 x 4 lattice, from Ref. 6, for several values of
t/J and at k = (7/2,7/2). In the figure we give AF in
units of ¢, which is the dominant scale at large ¢/J, while

¢x(8) = Ao sin(k-8) , (35)  in the inset we give AF in units of J, which is the domi-
nant energy scale at small t/J. For t = 0, i.e., the static
Ax(8) = B, cos(k-§), (36)  hole case, we find ¢ = A = 0. The difference between the
TABLE Il. VMC results for the 8 x 8 lattice , with the TABLE III. VMC results for the 16 x 16 lattice, with the
restriction on S* = =4-1. ' restriction on S* = +1.
t/J E T AE /7 E T AE
0.0 —172.375(06) 0 2.237(09) 0.0  —295.807(21) 0 2.187(31)
0.20 —72.492(06) ~0.180(01) 2.120(09)  0.20  —295.923(21) —0.179(01) 2.071(31)
0.50 —72.911(07) —0.738(02) 1.701(10)  0.50 —296.332(15) —0.741(07) 1.662(25)
1.00 —73.815(08) —1.852(05) 0.797(11) 1.00 —297.252(22) —1.848(09) 0.742(32)
2.50 —76.753(14) —4.920(13) -2.141(17)  2.50 —300.203(30) —4.920(23) ~2.240(40)
5.00 ~81.837(25) —10.072(25) -7.225(28)  5.00 —305.320(49) —10.097(45) —17.326(59)
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TABLE IV. Comparison between VMC and exact diago-
nalization results for the 4 x 4 lattice case, at k = (x/2, x/2),
obtained without restriction on S*.

t/J E E (exact) T AE

0.0 —16.547(02) ~—16.880 0.000  2.247(03)
0.20 —16.652(02) —16.980 —0.175  2.142(03)
0.50 —17.044(02) —17.465 —0.725(01)  1.750(03)
1.00 —17.892(03) —18.573 —1822(02)  0.902(04)
2.50 —20.732(06) —22.533 —4.811(05) —1.938(07)
500 —25.572(11) —29.718  —9.760(11)  —6.778(12)
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TABLE VI. VMC results for the 16 x 16 lattice, without
restriction on S* .
t/J E T AE
0.0 —295.756(15) 0 2.192(20)
0.20 —295.873(14) —0.179(01) 2.075(19)
0.50 —296.293(15) ~0.737(03) 1.655(20)
1.00 —297.199(16) ~1.850(07) 0.749(21)
2.50 —300.151(22) —4.923(16) —2.203(27)
5.00 ~305.270(35) —10.101(32) —~7.322(40)

exact ground-state energy and the variational energy at
small values of ¢t/J can be attributed to an incomplete
description of spin background fluctuations given by the
factor exp(—1 3°; <j Uij $7s}), whereas hole motion effects
are, in this regime, correctly described by the variational
wave function. For £/J > 0.5 the difference between vari-
ational and exact results begins to increase.

For k = (7/2,7/2), ¢ = ¢y = A,. In Fig. 2, we
compare the value of the variational parameter ¢s found
for this value of k with that found analytically in Sec. III
by minimizing E(p) given by (28). Notice that there is
only a small difference. The difference is mostly due to
the fact that (24) and (25) are found by minimizing the
energy without allowing for the tail (37). The difference
in the optimal values of the variational parameter due
to the fact that u # 0, is smaller. In Fig. 3, the solid
line gives the results for A obtained from (24) and (25)
and k = 0 and the open circles the optimal values for the
parameter A found by the VMC procedure where we have
set A, = —B,. We notice that they are very close. In
fact, calculating the energy with MC and « # 0 and the
value for A given by (24) and (25) gives the same energy
within error bars.

The hole band E(k) was also computed for several val-
ues of £/J. A typical result is shown in Figs. 4 and 5 for
t/J = 0.5 obtained by restricting to configurations with
total S* = £%. The structure of the hole band agrees
reasonably well with the one of Fig. 14 of Ref. 6. The
fact that the energy of the hole at (#/2, #/2) is degener-
ate with (0,7) and (,0) in the exact diagonalization® is
believed to be due to additional symmetries of the 4 x 4
lattice® which are not present in other lattices. We nu-
merically searched for the optimal value of A at a few

TABLE V. VMC results for the 8 x 8 lattice, without
restriction on S*.

t/J E T AE ,
0.0 —72.296(05) 0 2.193(07)
0.20 —~172.412(05) —0.179(01) 2.077(07)
0.50 —172.831(05) —0.737(02) 1.658(07)
1.00 —73.735(06) —1.850(04) 0.754(08)
2.50 —~76.669(11) —4.914(10) —2.180(13)
5.00 —81.747(21) —10.059(21) —17.258(23)

different values of k and obtained A for the remaining
wave vectors by linear interpolation. We found A; = 0
at k = (0,0), (n,0), (x,7), (7,7/2), and A ~ 0.085
at k = (7/2,0), (7/2,7/2). The curve features a mini-
mum at k = (7/2,7/2), and attains its maximum value
at k = (0,0) and (7, 7). We found the effective mass
of the hole to be smaller in the direction (0,0) to (=, =)
than in the direction (0, 7) to (7, 0) (compare Fig. 4 with
Fig. 5). This feature of the quasiparticle band agrees
with other theories and calculations.’:7=9:17:18 Regults
for the bandwidth W, obtained as the difference between
E(n/2,7/2) and E(m,x), are shown in Fig. 6. They show
a linear behavior for W/t versus t/J for small values of
t/J. In Fig. 15 of Ref. 6, it can observed that the band-
width increases moving from {/J = 315 tot/J = %, but
then it starts decreasing. The increase of the bandwidth
for t/J < 0.5 is also a result of the variational calcula-
tion; however, for larger values of t/J the behavior of
W disagrees with the exact results of Ref. 6. This was
expected because of the inadequacy of the wave function
to describe the physical processes (such as multiple hole

6
4.—-
< C
= 2
© -
0 —
-
-2
_’llll|'!|Il|llllllJlllll'llll
[+] 1 2 3 4 5 8
: - t/J

FIG.1. Comparison between VMC (open circles) and ex-
act diagonalization (dashed lines) results for the 4 x 4 lattice,
at k = (x/2,7/2). In the figure we give AE in units of ¢,
which is the dominant scale at large ¢/J, while in the inset
we give AE in units of J, which is the dominant energy scale

at small ¢/J.
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FIG. 2. Comparison between the values of the variational

parameter ¢ found at k = (7 /2, x/2) (open circles) and the
values obtained by minimizing E(p) given by (28) (solid line),
for different values of ¢/J.

hops) which have been neglected in the present study.
We are in the process of improving the wave function by
allowing for such processes as also explained below.

In Tables I-VI we give the total energy E, i.e., the

expectation value of (1) with the state (15) at k ==

(7/2, = /2), where this quantity is found to attain its min-
imum, for several lattice sizes, with the restriction on the
total S* = 44 (Tables I-IIT) and without such restric-
tion (Tables IV-VI). We also give the hole binding energy
AE, as obtained by subtracting from F the variational
ground-state energy for the no-hole case computed with
the wave function (7), with and without the restriction
on S*. Assuming the hole binding energy AFEr for an

0.8 T T T T T T T T T T T T T T T T T T T
I I l ]
[+ -
i : ]
- c ~
0.8 r— o —]
T 0.4 L —
0.2 —]
0.0 1 i1 1 ' 1 L 1 J_I 1 11 1 I 11 L 1 ‘ 1 1 J_L[ 1 ]

0 1 2 3 4 5
/3

FIG. 3. Comparison between the values of the variational

parameter A; found at k = (7/2,7/2) (open circles) and the
values obtained by minimizing F(p) given by (28) (solid line),
for different values of t/J.
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FIG. 4. Hole dispersion curve E(k), plotted along the di-
rection M XT in the Brillouin zone (see inset), for a 16 x 16
lattice, for ¢/J = 0.5 .

L x L lattice to scale as AEL = AFEw + o/L? , we have
performed finite-size scaling analysis of the results of Ta-
bles I-VI. Our extrapolated estimates for A E, fall inside
the error bars of the results for the 16 x 16 lattice (Ta-
bles IIT and VI). Therefore we believe that the results
for the 16 x 16 lattice give a good estimate, within error
bars, of the infinite-size lattice, with the wave function
(15). As discussed earlier and as can be seen by com-
paring the data of the last two columns of Table I, the

-295.9 - J& - -
M
-208.0 SRR
—298.1 .
T
; —296.2 . .
bog Pt
t 13
—-288.3 § § h
}
M . M
k
FIG. 5. Hole dispersion curve E(k), plotted along the di-

rection M M"' in the Brillouin zone, for a 16 x 16 lattice, for
/7 =05.
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FIG. 6. Hole bandwidth, W/t, plotted vs t/J.

variational estimate of the energy for t/J < 0.5 is in good
agreement with the results of the exact diagonalization.®
Assuming that in this range we can trust the variational
results, both because they agree with the exact diago-
nalization results and because of the physical arguments
given previously, we can give an estimate of the magni-
tude of the finite-size effects on the exact diagonalization
calculation. For example, for t/J = 0.2 we find that
AF(exact)=2.25 while AFE(variational)=2.27 in units of
J for the 4 x 4 lattice; this difference, which is due to
the approximate nature of the variational calculation, is
significantly smaller, in this region, than the difference of
about 0.2 between the results on the 4 x 4 and those ob-
tained on the 16 x 16 lattice [A E(variational)=2.07]; this
might give an idea about the finite-size effects affecting

(a)

43 o ) QUASIHOLE EXCITATION IN A QUANTUM ...

10 361

~ the calculation on small-size lattices.

The dipolar distortion of the antiferromagnetic order
can be determined by computing the expectation values
of the three components of the spin at each lattice site
with the state (16), i.e., with no restriction on the total
S%. As explained before, such a state features, in the
no-hole case, a nonzero expectation value of the spin at
every lattice site, along the z direction. The distortion,
induced by the hole, has the effect of rotating the spins.
Fig. 7 shows results for a 16 x 16 lattice, for ¢ = J and
k = (wn/2,7/2), when only the planar distortion is present
and (s*) = 0 at every site. (a) and (b) refer to the two
different sublattices. The vector at each lattice site is
proportional to the expectation value of the spin at that
lattice site. By computing the expectation value of s?
at every lattice site we found that quantum fluctuations,
that reduce the magnitude of s with respect to its classi-
cal value, are less important in the neighborhood of the
hole than far away from it, a fact already noticed by Bu-
lut et al. for the case of a static hole in a 4 x 4 lattice.!®
The reduction of the staggered magnetization!? in the
neighborhood of the mobile hole is accomplished by a
coherent rotation of the spins, within our wave function.

In conclusion, we have carried out variational Monte
Carlo calculations for a single hole in the 2D ¢-J model.
The wave function includes “Jastrow”-type spin-spin
and hole-spin correlations. The latter are analogous to
Feynman-Cohen backflow correlations introduced to de-
scribe elementary excitations in liquid 4He. We find that
the hole creates a long-range dipolar distortion of the an-
tiferromagnetic order. The wave function is accurate for
small values of t/J (¢/J < 0.5), while for higher values of
t/J we need to generalize our wave function by introduc-
ing higher-body static as well as exchange correlations
between the hole and the spin background. These effects

(b)

FIG. 7. Distortion of the antiferromagnetic alignment for a 16 x 16 lattice, at k = {x/2, v/2) and t/J = 1. (a) refers to the
even sublattice, where the hole is residing, (b) to the odd sublattice. The arrows represent the expectation values of the spin

at the lattice sites.
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modify the correlation operator which acts on the Mar-
shall state in such a way that “string” states, where the
spins along the hole path are displaced by one site, are
allowed. At large values of t/J, the contributions from
such states become increasingly important. Such states
have been studied within the Brinkman-Rice?® approach
where the effect of background fluctuations is suppressed.
In our approach such fluctuations as well as backflow cor-
relations have been included; thus, it seems attractive to
attempt to improve the wave function along these lines.
In addition, it would be interesting to study the effects of
such “string”-like correlations on the coherent distortion
of the AF order. At the present time we are also using
the variational wave function as a guidance function for
a Green’s-function Monte Carlo simulation.
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APPENDIX:

In this appendix, fo]lowihg Feynman and Cohen,!! we
calculate the large-distance behavior of the spin-backflow

|

6 B
—sinfk - § + ¢u(8) — dx(—6)]6 - VAs(x)

+cos[k - 8 + $u(8) — ¢ (—6)]6 - V (26 . VA,s(r,r'))] + (J/28)Véi(r) - Vp(r) =0,

where § = &, §, and with the definitions

p(ry) = c? NuZZ"'ZEkZ(rI;rZ:---,I'Nu) ,

rz r3 Ny

P(l'l,r?.) = CZNU(N‘L‘ - 1)2. o Z’Ekz(rl)rzj .- 'erv.) )

rs Ny

As(rs) = C2Ny(Ny — 1) -+ > E(b,r2,73,..

PNy

A&(r2; I'3) = CzNu(Nu - 1)(Nu - 2)2 ce EEk('s: 1‘2,1‘3’, - EN, )Ek(_‘s’rZ) F3, ..

N,

The first two terms in Eq. (A3) refer to the hopping of
the hole to a nearest-neighboring site occupied by a down
spin, whereas the other two terms refer to the hopping to
a site where an up spin is residing. If we confine ourselves
to the low-density limit, that is, we consider the situation

N, )Ek(—8, 12,73, .-
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function ¢, (r), r being the coordinate of a boson relative
to the impurity. We first rewrite (14) as

¥k = C e ™*Rexp (—izq’zk(rj)) Ex(r1,r2, ..., TN,
J

(A1)
with
Ek(rl,rz, “e. ,rNu)
1
= exp —Z)\k(rj) exp —§Zu(r,~ —rj) (A2)
j i<j
where ry,...,ry, are the coordinates of the bosons rela-

tive to the impurity and L(¢) is the number of “empty”
sites, corresponding to down spins, in the negative sub-
lattice. € is a normalization constant. A differen-
tial equation for ¢y (r) can be obtained by imposing
that (A1) satisfy the single-particle continuity equation
ng .- 'ZrN“(‘FT*ﬁ‘PT — \I’T[}\I'T*) = 0. Upon re-
taining up to terms of the order of (V¢y)?, VE,? and
Vi - VEy , one obtains ,

> [sin(k . 8)8 - Vp(r) — cos(k - §)6 - Vp(r)6 - Véi(r) — cos(k - 6)6 - (Zs -v'qsk(r')p(r,r'))

(A3)

(Ad)
(A5)
(A6)

JINL) »

TN (A7)

I

where the number of spins pointing down is much larger
than the number of those pointing up (low density of
bosons), then it is reasonable to assume that the hole will
be surrounded most of the time by spins pointing down,
i.e., it will mostly hop to “empty” sites, in the boson
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representation. We can therefore neglect the second two
terms of Eq. (A3) because they are small compared to
the first two. At k = (7/2,7/2), we have

V-[kp(r) + (J/2t)Vu(r) p(r)] = 0 (AB)
p(r) is the probability of finding one particle at the po-
sition r relative to the impurity. At large distances from
the impurity, the function p(r) approaches a constant
value p,. On assuming Véi(r)—0 when r — oo we
find that the leading contribution to ¢x(r) is given by
Ay (kr)/r2.
The same long-distance behavior can be obtained for
small values of k. In this case, we have

V- [ kp(r) = V& (r)p(r) + (Eq&k(r')V'p(r,r'))

+(J/ 2t)V¢k(l‘)p(r)] =0. (A9)

At low density, the distribution function p(r,r’) can be
approximated by p{r)p(r’), where p(r) is the boson den-
sity. The k dependence of p is contained in the function
Ax. With the ansatz that ¢, and A, are both functions
of k-r, we can set

Zd)k(r’)V’p(r') = Bik. (A10)

Therefore, our differential equation is

V- [(1+ A)kp(r) — VO« (r)p(r) +(J/2t)V i (r)p(r)] = 0.
(A11)

Using the same reasonings as before, we find that the
leading term of ¢y (r) is again Ay (k-r)/r.
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