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We study the spin-% Heisenberg antiferromagnet on an infinite square lattice. The calculational
scheme known as “paired-phonon analysis” developed for strongly correlated quantum fluids is ex-
tended to a “paired-magnon analysis” to study quantum antiferromagnets. We define a complete
and orthonormal set of multimagnon states and calculate the matrix elements of the Hamiltonian
using a separability approximation. Our results obtained by diagonalizing the Hamiltonian matrix
analytically are very similar to those obtained in spin-wave theory. We obtain —0.3290, for the
ground-state energy per bond in units of the antiferromagnetic coupling and 0.303 for the ground-
state staggered magnetization. These results compare well with the best-known estimates
—0.33440.001 and 0.313, respectively. We derive the analytic form of the ground-state wave func-
tion in this approximation and find it to be of the same form as that assumed by Marshall in his
variational studies.. The zero-point motion of long-wavelength excitations (spin waves) in the mod-
el, however, reflects a long-range tail in our wave function. We discuss the separability approxima-
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tion by giving quantitative arguments which justify its validity.

I. INTRODUCTION

The discovery of copper-oxide superconductors has
renewed the interest in certain quantum spin and fermion
models. The examination of these materials by neutron
scattering experiments' shows long-range antiferromag-
netic (AF) correlations which may be understood®® in
terms of the dynamics of a simple two-dimensional (2D)
spin-; AF Heisenberg model

H=J 2 SR'SR' . (1.1)
{R,R")

In this model Si describes the Pauli spin-1 operator of
one electron of the ith CuO, cell being in a linear com-
bination of the orbitals dxz_yz of the copper and p, and

py of the two oxygen atoms of the CuO, plane. This
model can be obtained as the strong-coupling limit of the
Hubbard model, when the conduction band is half filled.
Contrary to its simplicity the model (1.1) lacks an exact
solution in two or higher space dimensions and a growing
number of numerical,>* analytical,® or semianalytical®
techniques of an approximate nature have been em-
ployed. Even though there is no exact statement yet,’
based upon the above methods, it is believed that the
spin-+ AF Heisenberg model on the square lattice devel-
ops AF long-range order at zero temperature. Moreover,
the general picture emerging from these studies is that
one may obtain a relatively good quantitative description
of the ground state of the AF Heisenberg model by treat-
ing small spin fluctuations above the Neel state perturba-

tively.
The Hamiltonian (1.1) can be written as
H=H +H,, (1.2a)
le% 2 o-f{g'ﬁ, , (1.2b)

(R,R")
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H,=1 3 (S{Sg+SgSi),
{(R,R")
where 0?=28% S*t=§, +iS, and S =S8, —iS,, and by
letting J =1 we measure the energy in units of J.
We define the set of “multimagnon” states in the fol-
lowing way:

" (1.2¢)

l"'n(k)"')EH(O']z{)n(k)kb}, (1.32)
k
z — 1 ik'R .z
oi=—= Y e*%0% , (1.3b)
k ‘/N % R

where the sum runs over all N lattice vectors R and
n(k)=0,1,2,...,N. Thestate |¢) is defined as follows:

6= (le)m S (—1DEe) . (1.4)

Here the sum is over all possible spin configurations ¢ of
the lattice and L (¢) is the number of down spins in one
sublattice contained in the configuration ¢. Therefore,
the state |¢) is

lg>= 1T IR); IT IR)_, _ (1.5a)
RE 4 REB
. _

|R>i=v§(|+>il M, (1.5b)

where 4 and B represent the two sublattices and |+ )
and | —) are eigenstates of o with eigenvalues +1 and
—1, respectively. The operator o'} acting on |R ), gives

o%|R) . =|R)_, (1.6a)
okIRY_=|R), . (1.6b)

Since the states |R) , and |R)_ form a complete basis of
the Hilbert space of the electron at R, all possible states
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of the Hilbert space for N spins can be obtained by acting
on |¢) by all products of og,...,0%k, for any I
(0 <! 2 N) different sites. It can be easily verified that the
state (1.4) [or (1.5)] has zero staggered magnetization in
the z and y directions but has full staggered magnetiza-
tion in the x direction. In fact, if we rotate the Neel state
around the y axis by 7/2 we obtain the state (1.4) [or
(1.5)].

The set of states defined by (1.3) form a nonorthogonal
basis. In the next section of this paper we orthonormal-
ize them and calculate the matrix elements of H in a
separability approximation. This approximation was in-
troduced in the theory of quantum fluids® in the context
of “paired-phonon analysis” of strongly correlated Bose
liquids. Following Ref. 8 we extend the method of
“paired-phonon analysis” to a “paired-magnon analysis”
to study the spin-i Heisenberg antiferromagnet. The
separability approximation neglects the coupling of
paired multimagnon states. In Sec. III we diagonalize the
Hamiltonian matrix and find the ground-state and ele-
mentary excitations. We obtain —0.3290 J for the
ground-state energv per bond of the infinite square lat-
tice, which is in <2% agreement with the most accurate
estimates.® In Sec. IV we derive the analytic form of the
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m!iniIN!

) = ‘M_-—(m +n)]!

fR,'rrj}c

with k70. Here, {R;,r;}Jc means that the sum is over all {R,...

ik-(R,+ -+ +R ) —ke(r,+ - +1
e 1 me m
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ground-state wave function and show that it has the form
assumed by Marshall in his variational studies. Our wave
function, however, has long-distance behavior consistent
with the existence of low-lying long-wavelength excita-
tions (spin waves) in the model and their zero-point
motion. In Sec. V, we calculate the staggered magnetiza-
tion and find 0.303 the same value with the results of
spin-wave theory.> In the same section, we give quantita-
tive justification of our separability approximation. Since
the ground-state properties of the spin-1 Heisenberg anti-
ferromagnetic can be analytically and accurately calculat-
ed with this technique, it will be interesting to study the
presence of one, two, or more holes with the effective
Hamiltonian obtained from the Hubbard model in the
strong coupling limit.

II. MULTIMAGNON STATES AND MATRIX ELEMENTS

Let us start from the following states:
|m,n)=(c2)™(o%,)"|¢) .

These states, however, do not form an orthogonal set.
We modify the definition as follows:

(2.1)

n) Zz

Uf{l...aRmail...aal(ﬁ) , (2.2

yR,,»rp,...,1,} with the constraint

R,;#R ;71,717 K. The overlap between such states is given by

() = [N =(m +m)ILN — ()] o
N! mim'lnin’!
% s eik-(R,+ R, )e —ik-(Rj+ +R;,,,)e —ike{r+ - 1, )e ike(x}+ oo +r,)
{Ri,rj}c,[R;,r}}c
. X<¢|o_;; .. ,0.;:’“0:,1 . 'a:',,.afll . .'o.ima.:l .. .0-:"|¢>
=8, nOm,m’ - (2.3)

In order to obtain nonzero contribution, the o’s must occur in pairs such that (o?)>=1 (because {¢|o?|¢ ) =0). Howev-

er, all the sites {Ry,...,R,,,ry,...

ly. Hence m'=m, n’'=n and the sites Ry, . .
ry,...,I, must be identical to any permutation of rj, . ..

,T,} are different and no two sites in the set {Rj,..
same. Moreover, R,7r} and R;7r;, because if R; =r; or R,
., R, must be identical to any permutation of R}, ..

s Ry1y, ..., 1) are the

=r’, we obtain k=0 by summing over R; or R; respective-

J
., R}, and the sites

- There are m n! such permutations. The matrix element
of ¢’s is unity for sach such term and the summation over all different Ry, ..

. R, and r,...,r, gives a factor of

N(N —1)N —2)- - [N —(m +n —1)]. Therefore, the states |m,n ) defined by (2.2) form an orthonormal set.
The states defined by Eq. (2.2), however, do not form a complete set. The entire Hilbert space is spanned by

[N—(mk+m_k)]'
mk!m_k!N!

emgm_g )

Il

k,kx >0

Ry F e ARy, ) kel
e e
{Ri,rjlc

m_k)

z . s zZ z ...
XUR] ORmkarl O'rm (2.4)

l6),
k
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where m, and m_, are the number of magnons in the
momentum states k and —k, respectively. These paired-
multimagnon states are nonorthogonal. We can proceed
further by introducing a separability approximation® in
the calculation of the matrix elements of the unit opera-

tor and the Hamiltonian. Namely
(ooompym’y | mmg )

— I {(mp,m_yimg,m_g)

kk >0
=00 6, .8, , > 2.5)
Kk, >0 PR -k ok
and
(-'-m{(,m'_k"'IH—E¢,|'-'mk,m_k“')
- 3 (m;,qulH—E¢|mq,m_q>
9,9, >0
X H (mi,m'_kimk,m__k) . (2.6)

kg, k, >0

where E,=(¢|H|¢). Since we have orthogonalized the
states (1.2) for all k, within the separability approxima-
tion the states (2.4) are orthogonal. This approximation
neglects the matrix elements which couple a subspace
defined by (2.2) for a definite value of my,m_; with
another subspace defined by (2.2) and characterized by
different values. This approximation makes sense only in
a limited function space characterized by

S m<<N . 2.7
k

Our results are subject to the validity of the approxima-
tion (2.5) and (2.6). In the rest of the treatment we do not
introduce any further approximation. In Sec. V, we will
come back to this point and show that our solution
satisfies the condition (2.7) to a reasonable degree.

The expectation value of the Hamiltonian (1.1) with
the state |¢) is given by

E, =(¢|H|p)
=1 3 (glsisprsisxle)=—" .
(R,R")
(2.8)

Here, it requires the same effort to work on a generaliza-
tion of the square lattice to a hypercubic one in d dimen-
sions.

In the Appendix we calculate the matrix elements of H
in the separability approximation (2.6). We find that the
nonzero matrix elements are

3m-+n

1—-2‘ N , (2.9)

(m,n|H —E|m,n)=d(m +n)

(m—1,n —1|H —E4|m,n)=dVmn [1— ”‘;” ]y(k) ,

(2.10)
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{(m-+1,n +1!H——E¢|m,n)
=aVim ¥ F1) |1- ”’;” y(k), (@11
where
13 '
y(k)=—a7 > coslk,) . (2.12)
g=1

III, DIAGONALIZATION. GROUND-STATE
AND ELEMENTARY EXCITATIONS

In the approximation (2.5) and (2.6), the ground-state
wave function can be written as

9= TI Filg).

kk, >0

(3.1)

The state F [¢) can be written as a linear superposition

of states (2.2) with m =n, namely

Flé)= 3 C,lmm) . (3.2)
m=0

This function is the eigenstate of B with the lowest eigen-

value in the subspace spanned by (2.2) for a specific value

of k and all m =n. The matrix elements of the Hamil-
tonian in this subspace are

_ Im
{m,m|H —E4lm,m)=2dm [I_EF , (3.3)
(m—1,m—1H~E,|mn}=dm |1-2° |y(k) , 3.4
(m+Lm+1H —Eglm,m)=d(m+1) |1-2- |y (k).

(3.5)

We need to diagonalize H —E in this subspace. First
we neglect the terms of order m /N. We will show that
their contribution to the ground-state energy vanishes in

‘the limit N — co. The eigenvalue problem

(n,n|(H —E,)Fy|¢) =E{n,n|F|¢) (3.6)
reduces to the following recursion relation:
2dnC,+dy(kXn +1)C, . +dy(knC,_,=EC, .
(3.7

It can be verified that the normalized solution of Eq. (3.7)
is

- C,=CyD(k)", (3.8)
Co=[1—D (k)] (3.9)
with
— — 21172
D (ky=——1E[1 =y (k)] (3.10)

y(k) ’
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E=($|FLHF,|$)=d{—1=[1—y(?]?}  (.11)

and we must choos: the solution with the plus sign be-
cause the other leads to an unstable ground state against
creation of excitations (see the discussion of the excita-
tion spectrum below).

Using (3.1) and the approximation (2.5) and (2.6), the
ground-state energy is given by

E0=E¢+dkk§;>o{—-1+[1——y(k)2]“2} .

(3.12)

Evaluation of this expression for a large enough square
lattice gives Eq/dN =—0.3290. Thls value is in <2%
agreement with the best estimates® of —0.334::0.001.
For the one~Jimensional lattice we find
E,/N =—0.4317, which is within 3% of its exact value,
even though we do not except the separability approxi-
mation to be accurate in 1D for arguments given in Sec.
IV. For an infinite three-dimensional cubic lattice we
find E,/dN=—0.2986. Our expression (3.12) 1s the
same as that obtained with linear spin-wave theory.”

Next, we examine the contribution of the terms
neglected in (3.3)-(3.5). First, let us calculate the expec-
tation value with F, |¢) of the neglected parts ﬁ of

(¢IF,IH,Fk|¢>=—3d-N S Cim?

—2d—1—y(k

¥ )%‘,c,,,cm_lm2

| —Zd%ﬂk)z C,Cppymim+1),

(3.13)
and using Eqs. (3.8) and (3.9) we obtain

(¢|F£H,Fk|¢)=d—]1\—r(m2)—2d—]l§r—y(k)D(m) ,

, (3.14a)
(m?)= 3 |C, |’'mP=(1—D?) 3, D*"m? . (3.14b)
We find
__D* _ 1 1
(m)= -7 2= 2 (3.152)
2 2 .
(m2)=2 atb)__ 1 L . (3.15b)

(1-D2? 21—y 2A1—yH/2
The contribution of H, to the ground-state expectation
value per bond is otained as

S (¢|FLH,F|$)

dek >0
1 1
= % (m?)—2—- yD{m) . (3.16)
N'2 k,1§>0 N2 k,lg>0 .

The sum (1/N)SyD{m) converges for a square lattice
and therefore the second term vanishes in the limit
N—>. For large N, the sum of (1/N)3{m?)~In(N)

(.e., logarithmically divergent with the size of the lat-
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tice). Hence, the first term vanishes in the limit N— oo
as (1/N)In(N).

A single-magnon excitation of momentum q can be
defined as

lYg) =Gy I

k#q,k, >0

Fele), (3.17)

where F, for k5-q is identical to the ground-state opera-
tor defined by (3.2) and G is defined as '

Gld)=3 B,lm+1m). (3.18)
m=0

The excitation energy e (g) in the separability approxima-
tion (2.5) and (2.6) is given by

e (q)= | Hlpg) — (| Hl o)

=<¢|GLHGq|¢>f<¢1ngzpq|¢> , (3.19)

because the expectation values in the separability approx-
imation are sums over all k. Therefore, we need to deter-
mine G, in the subspace of |m +1,m ). Neglecting the
1/N terms in (2.9)-(2.11), the eigenvalue problem
(H—E;)Gyl¢)=EG,l$) (3.20)
reduces to the following recursion relation:
d(2n+1)B,+dy(g)V(n+1)n +2)B, 4,
+dy(gVn(n+1)B, =EB,. (3.21)

It can be verified that the solution to this recursion rela-
tion is

B,=ByVn+1D(g)", (3.22)
By=1—D(g)?. (3.23)

D(q) is the same as that found for the ground state and
given by (3.10). The eigenvalue is given by

E=V$|GIHG |¢)=—d+2d[1—y(gP]'?, (.24
and choosing the plus sign (3.19) takes the form
g)=d[1—y(gP]"*. (3.25)

We need to choose the solution with the positive sign for
the stability of the ground state.

1V, THE FORM OF THE GROUND-STATE
WAVE FUNCTION

Next, we determine the form of the ground-state wave
function. The normalized states defined by (2.2) for
m =n can be expressed as

m
lm,m)=S CMn,n), 4.1)

n=0

where |n,n) are nonorthonormal states given by Eq. (2.1).
We can determine C)' by projecting both sides to
{m',m'|. We obtain
m
Spm= 3, Cr{m',m'|n,n) . 4.2)

n=m'
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For N >>n and N >>m' we obtain
(n1)?

—— ’
m'ln—m')N’

(m',m'|n,n)= n>m

=0, n<m'. (4.3)
It can be verified that the solution to (4.2) is
cr= —”m - [’" ] 4.4)
Here
nj" (m—nin!’

Therefore, the ground-state wave function (3.1) is given
by

o) = II a-b

ik >0

1) mn

1/2 2 2 Dm f
m=0n=0
X(laZ?)¢) . (4.5)

The 37 —o3 7., can be changed to 37,3 > ,, and by
changing the summation variable m to / =m —n, we ob-

tain
© n
)= IT (1-DY"2 5 Z(loffoy
kk, >0 n=o0 N*
@
X 2 (__D)l [l -’!l-n
- 1=0
(4.6)
The last summation gives 1/(1+D)"*! and therefore
172 .
= 1=D S —1— D z|2
o k”!}” 1+D néo n! | 14+D |okl ¢
= D (k) )
Aexp kk2>0 1+D( k)l oil ]|¢>
=Aexp [~ 3, u;070; ][¢) , 4.7)
i<j
where
u =L2 1+ (k) 1/2_ o RiTR) @)
TN [ 1-rh) .

Variational wave functions of similar form were intro-
duced and studied by Hulthen® and Kastelijn'® for one di-
mension and Marshall!! for one, two, and three dimen-
sions. Starting from perturbation theory, similar varia-
tional studies were also performed by Bartkowski.'?
More recently, the same form was studied by Huse and
Elser!® using the variational Monte Carlo (VMC) ap-
proach. They took u(1)=u; and u(r)=c/rf for r > 1,
where r =|R; —R;|, and treated u,, ¢, and p as variation-
al parameters. The best energy obtained in this ap-
proach' is —0.3319 J for u;~0.65, ¢~0.475, and
p~0.7. Similar VMC studies were carried out by
Horsch and Linden'* where using only u (1) as a varia-
tional parameter [and u (r > 1)=0] they found —0.322J
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for the ground-state energy in our units. Notice that our
u is not a function of the distance r between two points
on the lattice but rather a function of the two com-
ponents x and y of the vector R;;. In Fig. 1 we plot our
u(x,y =0) (open circles) and compare it with the results
of VMC (solid line). The form (4.7) and (4.8) has long-
distance behavior consistent with the existence of long-
wavelength spin-wave excitations. From Eq (4.8) we find
that
V2

u(r—»oo)=-—.

(4.9)
r _

Thls form [Eq (4. 9)] is shown by the dashed line in Flg 1

and we see that the onset of the asymptotic form starts
from essentially » =2. The question of the long-range
tails is well known in liquid *He where the existence of
long-wavelength excitations (zero sound) influence the
long-range behavior of the Jastrow correlation factor. !®
In the helium case the long-range behavior of the wave
function does not give significant contribution to the
ground-state energy. However, it has important conse-
quencies to the spectrum of elementary excitations when
the same wave function is used to define the Feynman-
Cohen states or to construct a correlated basis.'® We no-
tice that the tails of the wave function of Ref. 13 and that
of Eqgs. (4.7) and (4.8) are quite different. The reason for
that may be that the ground-state energy is not sensitive
to the exact tail of the wave function. The numerical re-
sults of Ref. 14 does not seem to support the significance
of the tail of the wave function for the long-wavelength
excitations in the system since they find that the numeri-
cally calculated structure factor and the excitation spec-
trum are linear at low momenta. While this work was re-
viewed for publication, however, we have received the
Green’s-function Monte Carlo work of Ref. 17, where the
conclusions of the authors confirm the results of our
analytical calculations. It will be interesting to perform a
variational calculation using a wavé function where one
treats u for the first few neighbors as variational parame-

T T T T T T
. L o
0.6 o _Huse and Elser N
i o
o  Thiswork
—~ H \ -
? 04} \ ——— I —~oofail ’ ]
>_, :
x
£
02
t
0_0*;. N 1. | [ 1
0 2 4 (¢} 8 10

FIG. 1. Our results for the exponent u(x,y) of the correla-
tion factors in the ground-state wave function [Eqgs. (4.7) and
{4.8)] (open circles) for y =0. The solid line represents the re-
sults of the variational Monte Carlo calculation (Ref. 13).



ters and a tail proportional to that of (4.7) and (4.8) to ac-
count for low-lying spin-wave excitations. The propor-
tionality constant can be found by requiring consistency
of the calculation and sum rules. !

V. STAGGERED MAGNETIZATION. VALIDITY
OF THE SEPARABILITY APPROXIMATION

We define the z component of the staggered magnetiza-
tion operator as
Mi=y S -17 sk,
xy
where x and y are the two components of the vector R in
units of the lattice spacing. The expectation value of Mz

(5.1)

(_1)x+y
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with the wave function (4.7) and (4.8) vanishes.
Let us consider the x component of the staggered mag-
netization

+ —
PR —_ x+yM_S_R_
Mm 3 (—1) S

=y (5.2)

X,y

where we have used the identity S*=(ST+57)/2. We
would like to calculate its expectation value with the
ground wave function (4.7) and (4.8). Since (4.7) and (4.8)
is a superposition of states with the same number of mag-
nons in states having k and —k, let us consider the ma-
trix elements of (5.2) with such states

' Ny _1\x+tyg-- —
{m',m' (=17 ISg |m,m) g YT

X >

IRi’rj]C’{R:’r}lC

X(¢|U;,1"‘

There are terms in which R is none of the {R;} and {r;}.
These matrix elements are nonzero if m =m’ and the set
{R,} is identical to any permutation of the set {R;} and
the set {r;} is identical to any permutation of the set {r;}.
The expectation value (—1*¥{$|S¢ [¢) =1 and sum-
ming over all R we obtain '

L1=2m /N8,

There are also nonzero terms in which one of the {R;}
and one of the {R;}] are equal to R. In this case we ob-
tain a nonzero coniribution if m =m' and the remaining
m —1 elements of 'R;} are identical to any permutation
of the remaining m —1 elements of {R;} and the {r;} are
identical to any permutation of {r;}. The expectation
value {(¢|(—1 oSt oglé)=—1, hence summing
over all R we obtain

We obtain the same contribution if one of the {r;} and
one of the {r;} are the same with R. The operator
(—1)**¥S; has the same matrix elements and therefore
we conclude that

_4m

TN

(m',m'| M |m.m)=1 J (5.4)

Hence, the ground-state expectation value of the operator

M., is given by

ik(R;+ - +R
e

V(N —2mM(N —2m")

» ! ! 2 : ! 1
m )e —ik«(Ryt+ -~ +Rm.)e—tk~(rl+ woetry, )e ike(r + - +rp)

O.Z

= (5.3)

Z ... q2 QF 52 .52 gE o gP
0% oy SRR, Ok, 0% o; 19) .

Hence, the ground-state expectation value of the operator
IQX is given by

—i_1 N S
<¢0|ﬂxl¢0>_% N k,I§>0 [ [I_Y(k)2]l/2 1 ] '

(5.5)

Evaluation of this expression for a square lattice and
sufficiently large N gives {lM,|1))=0.303 which is
~61% of its classical value. In 1D the correction
diverges, and in 3D we obtain 0.422, which is closer to its
classical value. The expectation value of the y com-
ponent of the staggered magnetization is zero. Note that
the expression (5.5) is identical to that obtained in spin-
wave theory.’

Next, we check the criterion for the validity of our
separability approximation. The average number of vir-
tually excited magnons in the interacting ground state for
an infinite square lattice is small as compared to the num-
ber of sites. We find that their ratio is [see Eq. (3.15a)]

1 1

R=— _—
N 20 | T—7(kPT7

1|=0.197, (5.6)

which is a rather small number. In 1D this integral
diverges and therefore the separability approximation can
not be justified. Our estimate, however, for the ground-
state energy per bond for 1D is within 3% of its exact

value. For an infinite 3D lattice the ratio R =0.078.
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Therefore, we expect the corrections due to our separabil-
ity approximation in 3D to be even smaller than those in
two dimensions.

In analogy with other interacting Bose systems m,
given by (3.15a), is the momentum distribution of the spin
degrees of freedom in the interacting ground state. We
demonstrate this as follows. We define the following
operators:

aflmn )y =Vim +D[m+1,n),, (5.7
aglmn)y=Vm|m—1,n),, (5.8)
at lmn ) =vVin +Dlmn +1),, (5.9)
a_ylmn)y=vn|mn—1), . (5.10)

It is straightforward to show that these operators satisfy
(5.11)
(5.12)

lapafl=[a_y,at 1=1,
[ai,af_k]=[ak,a‘k]=f) .

Neglecting the terms of order (m +m)/N the Hamiltoni-

an (2.9)—(2.11) is given by '

H,=d(ala,+a'a_)+dy(k)Naa_ +alal,).
(5.13)

This Hamiltonian can be exactly diagonalized by means
of a canonical transformation:

Ay =Mk, —pulklat, |

+ $ (5.14)
Ay =MEklay —plkla_y ,
with 4 E and A4, satisfying
[, Af1=[4_,, 4% 1=1, (5.15)
(4], 47, 1=[ 4y, 4_,1=0 (5.16)
by choosing
1 ,
Mi)Y=—m———r, (5.17
( [I—D(k)2]1/2 )
k) =——2K) (5.18)

C[1=D(kP
The full Hamiltonian (1.2) in the separability approxima-
tion takes the following diagonal form:

H=E,+ 3 [—d+e(k)]
Kk, >0

+ 3 ekNafa,+at 4 ),
k,kx>0

(5.19)

’
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where e (k) is given by (3.25). Therefore, these results are
the same as those obtained in Sec. IIL

Hence the momentum distribution of “bare” magnons
is

(¢ola{ak!¢o>=mk . (5.20)

The “condensate fraction,” i.e., fraction of degrees of
freedom occupying the zero momentum state for the
square lattice, is

»”

my=1——3 m, =0.803 .
N o

(5.21)

Namely, there is a significant fraction of degrees of free-
dom at k=0, even in the interacting ground state. We
can conclude that the spin-J Heisenberg antiferromagnet
relative to helium is not as strongly interacting a system.
In the former the “condensate” fraction is ~80%,
whereas in helium the strong interactions leave only
~99% of the atoms in the condensate. !

It will be interesting to attempt extending this ap-
proach to the case of the effective Hamiltonian obtained
from the Hubbard model in the strong-coupling limit. 2
Below half filling and at half filling, this Hamiltonian
operates in a subspace of the Hilbert space having states
with singly occupied sites. At half filling, it is equivalent
to the Hamiltonian (1.1). The next obvious step is to
study the case of one, two, or more holes with this Ham-
iltonian.

ACKNOWLEDGMENTS

This work was supported in part by the Center for Ma-
terials Research and Technology of The Florida State
University (FSU) by the U.S. Defense Advanced
Research Projects Agency (DARPA) sponsored Florida
Initiative in Advanced Microelectronics and Materials
unider Contract No. MDA972-88-J-1006 and by the
Supercomputer Computations Research Institute of FSU
which is partially funded by U.S. Department of Energy
under Contract No. DE-FC05-85ER-250000. '

APPENDIX

In this appendix we calculate the matrix elements of
the Hamiltonian with the set of states (2.2). First we con-
sider the z term

1[N =tm )N = +a0] |

ot ez 2 —
{m',n laRUR,Imﬂ) N} mim'inin'l

x Z

{Rivrj]c’{R,’-J}}c

X(¢]o;;"'0

>4 Z ZzZ 2z z Z z z
0% a% GEoRoL 0k of o .
' O r TRIRIR, R, Or rn]¢)

eik-(R,+ < 4R, )e—-ik-(R'l+ +R;n,)e ~ike(r;+ oo Fr, )eik-(r;+ sl

(A1)
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(1) We obtain nonzero diagonal matrix elements with
m’'=m, n'=n, in the following cases: (a) R is one of
{R;] and R’ one of {R}}, (b) R is one of {R;} and R’
one of {R;}, (¢) R is one of {r;} and R’ one of {r;}, and
(d) R is one of {r;} and R’ one of {r;}. In the first case
there are m? terms because R can be any one of {R;} and
R’ any one of {R;}. Let us consider for example the first
term where R=R; and R'=R]. In order to obtain
nonzero contribution the o’s must occur in pairs and
hence the sites R,, . .., R, must be identical to any per-
mutation of R, ..., R, and the sites r;, ..., r, must be
identical to any permutation of rj,...,r,. There are
(m —1)ln! such permutation. The summation over all
different R,,...,R,, and ry,...,r, gives a factor of
(N—2)YN—3)::+[N—(m-+n)]. The contribution of
the first case to (AL is obtained as

m[N—(m +n)] e kF(R-R)
N(N-—1)
In the limit N >>1 we obtain

St mOu n

' ’
m,m ’

8m',m

m m+n ik-(R—R'
Sn:’nw l].——ﬁ—]el ( ) .

The contribution of the other three cases can be ob-
tained in a similar way. Summing up the contribution of
the above four cases, we obtain

+ +
(m,nlaf{afz.!m,n)=(mNn) l_mNn
X(eik-(R—R’)+e—ik(R—R')) .

(A2)

(2) We can also have nonzero off-diagonal matrix ele-
ments with m’=m —1, n'=n —1, in the following cases:
(a) R is one of {R;] and R’ one of {r;} and (b) R is one of
{r;} and R’ one of {R;}. It can be easily verified that the

|
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contribution of both cases for N >>1 is
Vmn m+n
—1,n —1ljokokim,n)= 1—
{m n—1lokoklm,n) m : N
X (e R=R) 4, —ik(R-R)y
(A3)

(3) We can also have off-diagonal matrix elements with
m'=m+1, m'=n+1 when (a) Risoneof {R;} and R’
one of {r;} and (b) R is one of {r}} and R’ one of {R}}.
In these cases we obtain

{m+1,n+1|lokok|m,n)

1[NV =tm )N —(m'+n0] |

{m',n'| HUSESg +Sg Sy )|m,n)=

X
Ryl RLT e

N! mim'inln'l

_Vim+Dn+1) |, _mtn
N N
X(eik-(R—R')+e—ik-(R-—R')) . (A4)
Summing over all nearest neighbors R, R’ we find
(mynlHmyny=%(m +m) 1= 222 k), (AS)
2 N .
{m—1,n —llHllm,n)=%y(k)V mn |1— 2 ta ,
(A6)
(m+1,n +1]H,|m,n >=§y<k) CERCEDE
x [1—mtn (A7)
n
where
1 d
y(k)=g > coslk,) . (A8)
p=1
The second term of the Hamiltonian (1.2) is
IKe(R s R, —ikARY+ s+ R =ikt b)) kel )
e e e e
X (¢|a;; O Oh 0:; HSRSg+SgxSw)
Xaf{l'--of{moil---ainw) . (A9)

(1) We can have nonzero diagonal contributions with
m'=m and n’=n in one of the following cases. (a) None
of R and R’ is one of the {R;},{R/},{r;},{r/}. In this
case after summing over R and R’, we obtain

2
m+n

]———

—1dN ~

-

(b) One of the R,R’ is a member of the sets
{R;},{r;},{R}},{r;"}, and the other is not. In this case
summing over all R and R’ we obtain

d(m +n)
2

_m+n

N

1
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(c) Also the following four cases give diagonal elements:
(i) R is one of {R;} and R’ one of {R}}. (ii) R is one of
{r;} and R’ one of {r;}. (iii) R is one of {R;} and R’ one
of {r;}. (iv) Risone of {r;} and R’ one of {r,}.

Summing over all R and R’ the contribution of the
above four cases combined is

_m+n

1
N

—%y(k)(m +n)

(2) We obtain off-diagonal elements having m'=m —1
and n’=n —1 in the following cases. (a) R is one of {R;}
and R’ one of {r;}. (b) R is one of {r;} and R’ one of
{R;}. Summing over all R,R’ we obtain

d
5 y(k)

m-+n

1— Vmmd

m',m —lan',n ~1

(3) We obtain nonzero off-diagonal matrix elements hav-
ing m'=m +1 and n’=n +1 when (a) R is one of {R}}
and R’ one of {r;}, (b) R is one of {r;} and R’ one of
{R;]. We obtain

d
2y(k)

1—%%]1]\/(17; T F D8yt 18,041 -

Collecting all the terms contributing to the matrix ele-
ments of the second terms of (1.2), we obtain
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2
m-+n

{m,n|H,|\m,n)=— [l— N

m+n

d(m+n)
+ N

2

[1—y(k)] [l—-

(A10)

{(m —l,n—llelm,n)=-‘21—an [l_m_;,-_n_ v(k),

(A11)
{m+1,n +1|H2}m,n)=%\’ {(m—1)n-+1)

|—mtn

X

y(k). (A12)

Adding the terms (A5)—(A7) and (A10)—(A12) we obtain

_ _3m+tn
(m,n|H —E4|m,n)=d(m +n) |1 AN , (A13)
{(m—1,n—1|H|lm,n)=dVmn 1__m+n v(k),
{m+1,n +1|H|m,n)=dV(m +1)n +1) (A14)
- _m+n
X (1 % y(k), (A15)

where E4 ={¢|H|¢) is given by Eq. (2.8).
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