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We exactly diagonalize the effective Hamiltonian obtained from the Hubbard model in the
strong-coupling limit for a two-dimensional V10x+/10 size square lattice. The effective Hamil-
tonian operates on a restricted Hilbert space containing only states with singly occupied sites,
which makes the diagonalization possible within reasonable computational time for the above lat-
tice. The ground-state energy and wave function are obtained for several values of the coupling
ratio +/U and the doping fraction x. We find three different phases in the (x,7/U) phase dia-
gram. The first is characterized by antiferromagnetic order which extends to the longest possible
distance in the 10-site system. The second and third phases are characterized by antiferromag-

netic and ferromagnetic short-range correlations, respectively.

We comment on the possible

relevance of the results to the recently discovered high-temperature copper-oxide superconductors.

The recent discovery of high-temperature superconduc-
tivity! in copper oxides has kindled new interest in the nu-
merical solution of simple theoretical models. There is a
growing suspicion that a phonon mechanism alone cannot
account for such high critical temperatures. The possibili-
ty of new pair-binding mechanisms of electronic origin is
the object of intense theoretical investigations. A common
point of departure for many theoretical studies is the
Hubbard model which had been proposed to describe elec-
tron correlations in narrow-band systems. This simple
model has been extensively studied over the past twenty
years mostly in connection with the metal-insulator transi-
tion. It is argued? that the same simple model could pos-
sibly capture the physics of high-temperature supercon-
ducting materials.

Beyond one spatial dimension, however, there is no ex-
act solution to the Hubbard Hamiltonian, and informa-
tion from analytical studies in the various approximations
or limits of the model is sometimes conflicting. Exact nu-
merical diagonalizations are available only for medium-
sized systems in the limit of infinite on-site repulsion,® or
for very small systems,* because the dimensionality of the
Hilbert space grows exponentially with the size of the sys-
tem. Monte Carlo (MC) attempts® to simulate the model
at finite temperatures are hindered by well-known prob-
lems due to fermion statistics, and the calculations are re-
stricted to two dimensions and small systems. The struc-
ture of the ground state cannot be easily revealed in these
two-dimensional MC studies. Large statistical errors are
involved in taking the zero-temperature limit due to
finite-size effects in the “Trotter” (temperature) direction
of the lattice. Variational Monte Carlo studies®’ of
medium-sized systems have been reported recently and
provide interesting insight to the problem.

In the superconducting copper oxides the ratio of the
hopping matrix element ¢ to the on-site Coulomb repul-
sion energy U is thought to be small.2 Accordingly, a re-
duced Hamiltonian derived from the Hubbard model has

7

been analytically studied by several authors.% This
Hamiltonian is correct to leading order in the #/U expan-
sion and acts on a subspace of the Hilbert space in which
there are only singly occupied sites. The reduced Hamil-
tonian consists of a hopping term and two-site and three-
site electron exchange terms.® At half-filling it is formally
identical to the antiferromagnetic Heisenberg model
(AHM) which, for a square or rectangular lattice, is ex-
pected to have antiferromagnetic long-range order in the
ground state. Departure from half-filling by light or
heavy doping introduces the possibility of a transition to a
superconducting state as suggested in Refs. 8 and 9. In
these analytical studies assumptions concerning the struc-
ture of the ground state enter in a crucial way. On the
other hand, the effective Hamiltonian seems to give rise to
a wealth of interesting physics, which might be masked by
symmetries that one has built into the approximate
ground state. It is instructive therefore to resort to nu-
merical studies.

In the present work, we investigate the properties of the
reduced Hubbard Hamiltonian on a +/10 X\/-l% square lat-
tice with periodic boundary conditions by exactly di-
agonalizing the reduced Hamiltonian matrix. The fact
that this Hamiltonian acts on a restricted Hilbert space
makes the diagonalization possible. We obtain the
ground-state energy and wave function as a function of
the parameter ¢/U and at various fillings of the lattice.
There are two interesting aspects of the ground state: its
magnetic nature and the possible existence of quasiparti-
cles such as electron pairs or boson excitations whose ex-
istence is linked to superconductivity. At present, neither
aspect is unequivocally resolved. In this work we focus on
the first issue: namely, the magnetic properties of the
ground state. We find that the antiferromagnetic order of
the half-filled state persists at small to moderate doping,
up to the longest possible distance in the 10-site system.
This is seen for the first time in an exact solution of the re-
duced Hubbard Hamiltonian, and will be an interesting
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result if it survives in the limit of an infinite system.

We start from the Hubbard model on a two-dimen-
sional (2D) squate lattice, with M sites and NV electrons.
The Hamiltonian of the system is given by

H=UYXNitN;y—t X, (C}C; s +H.c.), 1)

i (ifhs .

where C;; is the annihilation operator for an electron at
site { with spin s, IV; ; the corresponding occupation num-
ber operator, and {ij} denotes a pair of nearest-neighbor
sites. The first term in Eq. (1) discourages double occu-~
pancy of any site, and the second term allows the electrons
to hop from site to site. The high-T7, oxide superconduc-
tors have strong two-dimensional features, so that in ap-
plying the present results to these materials, # should be
thought of as the hopping matrix element between copper
atoms in a Cu-O plane. Implementation of additional
features of these materials may be necessary to provide
full understanding of the superconducting mechanism.

In the limit #/U <1 the second term in Eq. (1) is small
and can be treated by standard perturbation theory. The
unperturbed Hamiltonian has highly degenerate energy
levels equally spaced by U. The lowest level corresponds
to states with no doubly occupied sites, the first level cor-
responds to states with exactly one doubly occupied site,
etc. Let So be the Hilbert subspace spanned by the states
of lowest energy. To second order, the linear combination
among the states of S that best approximates the ground

state is obtained by diagonalizing the following effective
Hamiltonian:®

Heg=H +H,+Hs3, @)
Hy=—t Y [&CHCi s+ ], 3)
(ij),s ‘
2
Hy= _z_tl'—j— Z (ij:sci,sNi, —sCiTs oS
(ij),s
+CJf_sCi, - CHCj ) @
12 T ¥
Hz=— T/" z [ék (Ck,s CjsN;j —s CisCis
(ijk}),s
+Cf —5Cj, - CFC )+ k)T,
(5)

where (ijk) denotes a triplet of sites in which j and jk are
nearest neighbors, and &; =1 or 0 depending on whether
the site is empty or occupied. The first term allows the
electron to move to an empty nearest-neighbor (NN) site
only. Both H; and H; describe processes in which double
occupancy occurs only virtually, resulting in an energy
cost U. The two-site term H, describes processes in which
an electron hops to a neighboring site occupied by an elec-
tron of opposite spin, making the site momentarily doubly
occupied. In the final state the two electrons are either in
the original configuration or in the one with spins ex-
changed. H3 gives rise to three-site virtual processes in
which one electron hops to a NN site occupied by an op-
posite spin electron, and the resulting double occupation is

relieved with the hopping of either electron to a next NN
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empty site. More details about this Hamiltonian are given
in Refs, 8 and 9.

At half-filling, H; and H; are zero and the remaining
piece H, has the same matrix elements in Sg as the Ham-
iltonian of the AHM with coupling J=4:%/U. In the
infinite-U limit, on the other hand, and at a nonzero dop-~
ing fraction x=1—N/M, only the first term remains.
This is still a nontrivial problem because doubly occupan-
cy is not allowed. Both these problems have been solved
by numerical diagonalization: Oitmaa and Betts'® calcu-
lated the ground-state properties of the AHM on a 4x4
square lattice and Takahashi® solved the U=oo limit for
arbitrary filling on finite cubic lattices of up to 12 sites.

In this work, we diagonalize the Hamiltonian (2)-(5)
for arbitrary U and x. Of course, one has to keep in mind
that its validity is restricted to small values of the ratio
t/U. Nevertheless, the numerical solution will be helpful
because the Hamiltonian itself is insoluble, and, in order
to reach useful conclusions, further limits or approxima-
tions are needed. :

Let us briefly discuss the choice of the lattice. Consider
the infinite two-dimensional square lattice in which the
solid square shown in Fig. 1 will be identified as the unit
cell. This unit cell has dimensions v10%+/10, contains 10
sites, and can tile the infinite two-dimensional square lat-
tice'® [the squares which can tile the infinite 2D square
lattice have linear dimension in Iattice units (n2+m?)/2
where n and m are integersl. The calculations were per-
formed on a single unit cell imposing periodic boundary
conditions. Ten is at present the largest number of sites

we can easily study for all possible fillings and couplings.
This unit cell was preferred over other choices having
different geometries but the same number of sites (e.g.,
2x5) in order to avoid having to infroduce anisotropy
among the coupling constants for the two directions.
Also, it is important to restrict the choice of unit cells to
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FIG. 1. The two-dimensional unit cell. The infinite 2D lattice

can be tiled by these tilted squares of size VI0x+/10 in Iattice
units.
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those containing an even numbers of sites, because only
then are the two sublattices of the infinite square lattice
clearly distinguishable. This feature is essential for the
calculation of the spin-spin correlations and for avoiding
frustration of the possible antiferromagnetic order at the
boundaries. )

In order to facilitate the computations, we have used
the Lanczos scheme for matrix diagonalization, as imple-
mented in Ref. 11. This proved very efficient since the
number of nonzero matrix elements was less than 1% of
the total for the largest matrices considered, which were
4200%4200. We found that the simplest way to calculate
the Hamiltonian matrix was to consider subspaces of
cigenstates all having the same S;. This method does not
take full advantage of the symmetries of the problem; fur-
ther reduction of matrix size can be achieved by consider-
ing invariant subspaces characterized by operators which
commute with the Hamiltonian. The latter, however, re-
sults in a more complicated procedure for the evaluation
of the matrix elements and becomes advantageous only
for larger lattices. v

For each filling factor n, =N/M =1 —x, we have con-
sidered the Hamiltonian for different values of #/U rang-
ing from 0 to ~0.5, above which the validity of the re-
duced Hamiltonian (2)-(5) becomes questionable, since ¢
and U are then of the same order. As a check of our cal-
culations, we have exactly reproduced the results of Oit-
maa and Betts!® for the 8-site and 10-site lattices at half-
filling (n.=1, one electron per site), and those of
Takahashi3 for the U/— oo case, at all possible filling fac-
tors.

Our results show that the lowest-energy state obtained
by diagonalizing the Hamiltonian is always characterized
by the smallest possible value of |S.|. In the case of
" half-filling, it has been shown rigorously that the ground
state has total S =0.!2 Detailed information about mag-
netic properties can best be obtained by examining the
wave function of the ground state and in particular spin-
spin correlation functions. Let the ground state be

lyo) =3 Clm 1) | i sd, )
iy .4

where n; ; =0,1 are the eigenvalues of the number opera-
tor N; 5. We then define the spin-spin correlation function
G (r )I

Gs(r) ={yo | 5:(0)s, () L o), o

where s, (i) is the z component of the spin operator at site
i.

The spin-spin correlation function shows the following
interesting features (see also Table I): At half-filling
(x =0, first line of Table I), there is tendency for antifer-
romagnetic ordering, the first NN’s being antiparallel
[G,(1) < 0] and the second and third NN’s being parallel
[G,(2) =G, (2) > 0]. Notice that the structure of the
lattice and the periodic boundary conditions give
G,(\2)=G,(2). For nonzero values of the doping frac-
tion x (i.e., a certain number of holes) the antiferromag-
netic ordering similar to that at half-filling extends up to
some value of x, depending on /U (second line of Table I,
AF phase). As x or ¢/U is varied, the system can cross to

TABLE I. The correlation function for the first, second, and
third NN at different phases. The dash in the first entry
represents any value of ¢/U.

(x,1/U) G,(1) G;(V2) =G,(2) Phase
1 ©0,—) —0.487 +0.313 AF
2 (0.1,0.10) —0.301 +0.167 AF
3 (0.2,0.075) —0.118 —0.038 AFC
4 (0.2,0.015) 0.037 —0.097 FC

a phase where the first-neighbor antiferromagnetic corre-
lation persists [AFC phase, Gs(1) <0] but further-
neighbor correlations nearly vanish [G;(~2) =G,(2) <0,
see third line of Table Il. Finally, there is a third possible
phase in which the short-range order changes from anti-
ferromagnetic to ferromagnetic [FC phase, G,(1)>0].
The longer-range order in the last phase indicates the ex-
istence of pairs of parallel spins each surrounded by oppo-
site pairs [G; (v2) =G;(2) <0, see fourth line of Table II.
The full phase diagram is shown in Fig. 2 and representa-
tive states well inside each phase are indicated by dots
numbered according to the tabulation in Table I. The
phase boundaries are defined by changes in the sign of the
first-neighbor correlation (lower boundary between AFC
and FC) and the sign of the second- and third-neighbor
correlation (upper boundary between AF and AFC). The
lower boundary is also characterized by an abrupt change
in the magnitude as well as the sign of the correlation
function.

To make the picture clearer, we calculate the probabili-
ty distribution of the staggered magnetization in the
ground state. The staggered magnetization operator My
per site is defined as

Mst--l_[Zsz(i)— zs,(i)], ®)
M ;€4 i€B
0.30 T T 11 1 T 1T 1 I T T T [ T T1T°T ]
0.25C- =
C tity .
0.20~ AF .
2 E
“ o051 =
8 N
0.10 o2 AFC —
= 03 -
0.05 -
- tHFC 94 ]
0.00 I IO T T T i A S I .
0.0 0.1 0.2 0.3 0.4
x (doping)

FIG. 2. The phase diagram on the (x,t/U) plane. AF stands
for antiferromagnetic phase, AFC and FC for the phases with
antiferromagnetic and ferromagnetic short-range correlations.
The points indicated by squares are transition points determined
by changes in the correlation functions (see text). The num-
bered dots correspond to representative states inside each phase
(see Table I). The lines are guide to the eye.
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where 4 and B denote the two sublattices. The proper
quantity to discern the presence of spontaneous staggered
magnetization in a finite system is the staggered magneti-
zation distribution

P(Sn)= 3 [ CUn,h) | 25s, at,ttn,1) » )

Ny.s

where M ({n; ¢}) is the staggered-magnetization eigen-
value of the state | {n,-,s}). In other words, the sum is over
all configurations having the staggered-magnetization ei-
genvalue equal to S,,. In Fig. 3 we plot the calculated
staggered-magnetization distribution for ¢/U=0.15 and
for x=0.1, 0.2, and 0.3. For x=0.3 the system is in a
phase with no long-range antiferromagnetic order and the
staggered magnetization is distributed around S, =O0.
For x =0.1 the system is in the AF phase, and the distri-
bution exhibits two peaks at S,,= +0.25. (In the ther-
modynamic limit, the up-down symmetry would be spon-
taneously broken and the two values would be separated
by an infinite-energy barrier. Only one of the two possible
states will be observed depending upon the initial condi-
tions.) For x=0.2 the system is just about to develop
staggered magnetization.

A phase diagram remarkably similar to Fig. 2 has been
suggested by the variational calculation of Ref. 7. Our
phase diagram is also consistent with mean-field theory, !>
even though our calculations are valid for small ¢/U and
mean-field theory is valid for large ¢/U. In Ref. 5, a MC
study of the full Hubbard model at finite temperature
finds antiferromagnetism only for x=0. The difference
might indicate that the extrapolation procedure to the
zero-temperature limit in the MC calculation is strongly
affected by finite-size effects.

Finally, we consider the possible relevance of the
present results for high-temperature superconductivity as
can be interpreted in the theoretical framework of Ref. 9.
If the ground state of the system liew in the AF phase, the
vacancies created by light doping will undergo a Bose-
Einstein condensation and superconductivity is due to the
superfluidity of the charged condensate. If, on the other
hand, the ground state of the system lies in the phase with
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FIG. 3. The calculated staggered magnetization distribution
for /U =0.15 and for x=0.1, 0.2, and 0.3. The lines are guides
to the eye.

short-range AF (F) correlations, it is possible that forma-
tion of pairs in a singlet (triplet) state will occur.®!'* The
singlet or triplet pairs can play the role of Cooper pairs in
the superconducting state. A realistic study of correlation
functions related to condensation of holes or electron pairs
may require larger lattices than the one considered in the
present work.
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