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Condensate fraction and momentum distribution in the ground state of liquid *He
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Calculations of the condensate fraction and momentum distribution of liquid *He are carried out
using variational ground-state wave functions containing two-body (Jastrow) and three-body correla-
tions. These wave functions give a satisfactory description of the equation of state of the liquid at
T =0. The calculations are performed within the scheme of hypernetted-chain equations, using the
scaling approximation for evaluating the contributions of the elementary diagrams. Results are re-
ported at densities p=0.3650‘3, 0.4010—3, and 0.4380 3, and compared with momentum distribu-
tions obtained from experimental data and Green’s-function Monte Carlo calculations.

I. INTRODUCTION

The theoretical and experimental studies of condensate
fraction and momentum distribution of atoms in liquid
*He are a longstanding problem of fundamental interest.
These studies started four decades ago after London' pro-
posed a connection between the A transition and the
Bose-Einstein condensation. In recent years, a variety of
experimental techniques?—* have been employed to mea-
sure the momentum distribution in helium liquids. At the
equilibrium density, analysis of the experimental data®?
gives condensate fraction ny~9—13% at T=0. The
value of ny obtained from the Green’s-function Monte
Carlo (GFMC) calculations® using the HFDHE?2 intera-
tomic potential of Aziz et al.% is found to be 9%, which is
at the lower limit of the experimental value. The value of
the average kinetic energy per atom has also been inferred
from the experimental data.> The experimental value of
14.0£0.5 K is in reasonable agreement with that obtained
in GFMC (14.5 K) and variational’ (14.8 K) calculations.

The momentum distribution n (k) is generally obtained
by calculating the one-body density matrix p(riy), and
taking its Fourier transform.® It is known’ that to obtain
an accurate evaluation of the p(r;;), with chain summa-
tion methods, it is necessary to sum the various series of
elementary diagrams. Fabrocini and Rosati!® used the
method of interpolating between the hypernetted-chain
(HNC) and Percus-Yevick (PY) equations to calculate
n(k). In this paper we generalize the scaling method
(HNC/S) developed earlier'":” for the calculation of two-
and three-particle distribution functions, to sum the series

of elementary diagrams in the calculation of p(7y).

During the course of this work Puoskari and Kallio!?
(PK) have also calculated the p(rq;-) with a very similar
HNC/S method. They have used Jastrow variational
wave functions

W,= Zf(rij) ’

i<j

(1.1)

obtained with the Lennard-Jones potential, whereas we
use the more realistic wave functions

‘1’"=Hf(r,-j) I1 Fsrygrpmora) (1.2)

i<j icj<k

containing three-particle correlations. Our wave functions
are obtained from the Aziz potential® which gives a better
equation of state than the Lennard-Jones potential.’

The HNC/S equations of the p(#;,-) of a Jastrow wave
function are given in Sec. II. The small differences be-
tween PK and our formalism are discussed at the end of
this section. The results of HNC/S calculations for the
McMillan-Jastrow wave function are reported; these are in
excellent agreement with the exact Monte Carlo results.!?

The HNC/S equations for wave functions containing
two- and three-body correlations are given in Sec. III
The n(k) calculated from the best available variational
wave functions (those of Ref. 7) is reported in Sec. IV.
Our values of ny are similar to those obtained with the
GFMC method, and a little below those obtained from the
analysis of neutron scattering data. The density depen-
dence of ng and n(k) is discussed.

II. HNC/S METHOD FOR JASTROW WAVE FUNCTION

The one-particle density matrix is defined as

\I/*(I'I',I'Q_, e ,I'N)\P(I'l,l'z, .

..,I'N)d372" N

d3
il .4 . @.1)

(r;)=N
o f |\Il(r17---,r1v)|2d3rl,..d3rN
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where N is the total number of particles in the liquid and
ryy=r;—rp. In homogeneous liquids (N— 0, at con-
stant density) the p(r;-) is a function of |ry| only. Its
Fourier transform gives the occupation probability for
single-particle states with momentum k:

n(k)= f p(re™® d’r . (2.2)
In Bose systems n (k) is written as
n(k)=Nnodro+ [ [p(r)—plr—o0)]eXd’r, (23)

where ng is the condensate fraction, and the second term
represents the momentum distribution for k> 0.

By expanding the many-body integrals in Eq. (2.1, in

powers of the functions
h (r,-j)=f2(rij)— 1 5

2.4)
§(r,-j)=f(r,-j)—1 , -

the following irreducible structure for the one-particle

density matrix has been obtained:®
p(r)=pnoexpl Ny (r)+ Eupy (1] - (2.5)

Here p is the number density of the liquid and Nyw(r) is
the sum of nodal diagrams given by the convolution

Nuw(rip)=p [ d°r;[gua(r12)—1]

X [8uwd(r12) —Nualriz)—1] . (2.6) _

The functions g,4(7) and N,,(r) are obtained by solving
the HNC equations -

gwd("lz)=f(r12)eXP[Nwd(r1z)+Ewd(r12)] » 2.7)
Nua(ri)=p [ @*r3lgua(riz)—11
X [8aa(732) —Naa(rsz)—1] -

The functions gz(r) and Ny (r) are the familiar pair-
distribution and nodal functions denoted by g(r) and
N(r)in Ref. 7.

The condensate fraction ng is given by®

2.9

no=exp{2R,, —Ry) ,
where
Ry=p [ d*r[gua(r)—1—Nya(r)—Eypa(r)]
—1p [ @rlgua(P —11[Nua () +2Eua(9] +Ey -
(2.10)

The R, is obtained by replacing all the w subscripts in the
above equation by d.

The E,,(r), Eug(r), Eg(r), E,, and E; represent the

contribution of elementary diagrams. There is no analytic
method available to evaluate these functions. The lowest
order (HNC/0) approximation is characterized by setting
all these functions equal to zero. In the HNC/4 approxi-
mation the E’s are calculated from the four-point elemen-

tary diagrams shown in Fig. 1. The dashed straight and _

wavy lines in these diagrams represent, respectively,
gii—1 and g,,—1. The solid and open circles represent

(2.8
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FIG. 1. Four-point elementary diagrams.

internal and external points. The contributions of these
diagrams are given by

Eppalriy)= +p* f (Gwa — D12(8uwa — D1z
X(guwd — 112(8wa— 1)y3

X{gag—Vsdrad®s ,  (2.11a)
Epaari) =5 [ (ua— Dis(gua— 11
X (gaa—1)23(8aa —1)a '
X (gaq— Uaad’r3d’ry , (2.11b)
Egqa(ry3)= ‘;‘Pz f (8aa—1)24(8aa - Das
X (gaq—1)14(gaa— )35
X (gaa— 1)asd’rad’rs , (2.11¢)
Ew)4=% [ (@ua— DisEpaalrin)d’ry (2.11d)
Eqa=5 [ (@ua—DnEari)d’s . 2.11e)
In the HNC/S method!! we assumed that
E(r)=(143545)E g3 4(7) . (2.12)

This approximation is based on the observation that the
contributions of higher-order elementary diagrams, con-

--— taining five or more points, have approximately the same

spatial behavior as that of Ey 4(r). The scaling constant
Sgq is determined by fulfilling identities that are valid
when the elementary diagrams are summed to all orders.

We note in Fig. 2 that the structure of g, is similar to
that of g4, and the topological structure of five- and
higher-body E,,, and E,; diagrams is identical to that of
E4; diagrams. In fact E,; (E,,) diagrams are obtained
from the E,; diagrams by replacing all the g4;—1 bonds
from one (both) external point by g,,;—1 bonds. We thus
expect the higher-body wd and ww elementary diagrams
to have the same spatial behavior as that of E, ;4 and
E,; 4, respectively, and approximate the total E,; and
E,., as follows:
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UL R B A 1T 1T ] 17T 1T 1 portant.
N The kinetic energy and normalization identities are used
to determine the scaling constants Sgg, Sug, and Sy.
1.3 These are
B I'nvp=Tr=Tpp (2.15)
d’k 'ﬁ
T k2 k), (2.16)
i MD ™ f (2m)p
1.O— Vi _(NO2
I TJF-_——Z;l-:pfgdd(r) [ 7 I d’, (217
# \
L Tpp= —— d?
PB ZmPfgdd(f) 7
- 22 [ gyrirnr )Vlf(ru)‘vlf(rlz)
I mP 3\, 7135723 Fr)f(rs)
Xd?rd’ris (2.18)
0.5—
for the kinetic energy per atom. The subscripts MD, JF,
- and PB denote momentum-distribution, Jackson-
Feenberg, and Pandharipande-Bethe expressions. The
i normalization condition
3
i [ Lk pi=1 2.19)
(27)Yp
is equivalent to
fe) L S |
o) p(r“r—O)—— (2.20)

FIG. 2. gg(r) for Jastrow and J + T wave functions of Ref.
7atp=0.3650"2.

Epa(r) = (14+8p0)E g olr) ,
(2.13)
B (r) e (1 4800 ) By o(7)

The one-point elementary diagrams give a factor
exp(2E,, —E,) in the expression for #y [Eq. {2.9)]. This
factor is neglected in all the earlier work. In HNC/4 ap-
proximation (2E,, 4— E;,4) is of order 0.01, and thus this
factor can be safely neglected. We can, of course, scale
the E;4 and E, , to approximate the total E; and E,.
The E; and E, diagrams are obtained by dressing the
Ey and E,, diagrams with gzz;—1 and g,4—1, respec-
tively, and integrating over one particle. However, the
symmetry factors of the one- and two-point diagrams are
generally different, and hence the scaling factors of the
one- and two-point diagrams are different, but related.
This is very similar to the scaling of three-point Abe dia-
grams A, and that of the Ey. In Ref. 11 we argued that
the ratio of sz; to s,, the scaling constant for Abe dia-
grams, is ~2. Similar arguments suggest that the ratios
S4/Sq¢ and s, /5,q should be ~3. We, hence, approxi-
mate the one-point elementary diagrams as follows:

Edz(l-i'-‘;'sdd )Eg4 ,

' (2.14)
Eym~(14+35,0)Eps .

We find that 2E, —E,; is ~0.03, and thus not very im-

In Refs. 11 and 7 the identity Tpeg=T7F is used to
determine the sg;. Here we use Typ =T F, and normali-
zation Eq. (2.20) to determine the s, and s,,,. The nu-
merical work is SImphﬁed by assuming that n(k) is ex-
ponential for £k >3.5 A~

n(k>3.5A"1) =exp[a(k—3.5)]n(k=3.5). 2.21)

The constant a is determined by fitting the In[zn (k)] in
k =3 t0 3.5 A ~!interval to a straight line. This approxi-
mation has been verified to be gopd up to ~4 A1
(see Fig. 7 in Sec. IV). The k>3.5 A~ ! region gives less
than 5% (1%) contribution to Typ [normalization in-
tegral (2.19)].

The results obtained with the McMillan correlation:

fir)=exp[—+(b/r)°] (2.22)

with b =1.170, at the equilibrium density, are shown in
Table I and Fig. 3. The importance of the elementary dia-
gram contributions is obvious. The close agreement be-
tween the HNC/S and Monte Carlo results of Refs. 13
and 14 suggests that the scaling approximations for the

TABLE 1. Results with McMillan-Jastrow wave function at
p=0.3650"2,

HNC/0 HNC/4 HNC/S MC
1o 0.112 0.113 0.106 0.105+0.005
plr=0)/p 1.81 1.52 1.00 1.00
Ty (K) 14.71 14.55 14.10 13.95
Tvp (K) 33.20 28.80 14.10
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FIG. 3. p(ry) for McMillan-Jastrow wave function at
p=0.3650"2 in HNC, HNC/4, and HNC/S approximations.
The dots give results of Monte Carlo calculations.

elementary diagrams are quite accurate.

The values of the three scaling factors for the
McMillan-Jastrow wave function at equilibrium density
are found to be :

Sgg=2.72, Spa=1.71, 5p=1.86, (2.23)

Puoskari and Kallio!? use both the two-component mix-
ture and Fantoni’s formalism used here to calculate the
plriyr). At any level of approximation the mixture for-
malism and Fantoni’s p(r;;-) are proportional to edch oth-
er. The only difference is that in mixture formalism the
ng is calculated by using the normalization condition
(2.20) in Eq. (2.5), whereas Fantoni calculates it indepen-
dently by Eq. (2.9). PK also use scaling constants sz,
Saw, and sy, (their «,p equal 145, in our notation), and
determine them from Typ=Tpg, Tyup=T3r, and
Typlmixture) = Ty where Typ(mixture) is the kinetic
energy obtained with n (k) from mixture formalism. This
procedure is identical to ours because a(k)(mixture) is
proportional to n(k), and so Typ(mixture)= Typ is
identical to the normalization condition. Thus we do not
find that the mixture formalism offers any simplification.
PK neglect the contribution of one-body elementary dia-
grams E,; and E,; we include them, but find that they are
small.

III. THREE-BODY CORRELATIONS

A signiﬁcant improvement in the variational energy of
liquid helium is obtained by including three-body correla-
tions in the wave function.”'* The wave function (the
J + T denotes Jastrow plus triplet) is taken as

\IJJ+T= Hf(rt] H f3(rlj’ zk) (3771)\
i<j i<j<k _
Fileprg)=exp |—3 % 3 §I(rij)§l(rik)Pl(rij'rik')J .
cyc 1=0,2
(3.2)

7025

 The I =1 term of f; gives the dominant contribution, the

1 =0 term gives a small contribution, and the [ =2 term
has negligible effect.’ )

HNC equations for the distribution functions of the
J + T wave function have been discussed in Ref. 7. The
HNC equations for the density matrix are obtained in an
analogous way by replacing the E Txp Xy =dd, wd, and ww
as follows:

E,,=Cy+E$ +Ey, . (3.3)
Here C,, are three-body elements given by
Car(rip)=p [ [f3(tia1:0)—1]
X84a iz )8aalrys)d a s (3.4)
Cud(ry)=p f [f3(rig,Tje)—1]
X 8ud(r10)8aa r5a)d ’ry (3.5)
Cuw(r11)=0. (3.6)

Ef, is the sum of elementary diagrams having only
8xy ~1 bonds, and E is the sum of elementary dlagrams
having one or more three-body cerrelations. The Edd4 di-
agrams are given in Flg 1 of Ref. 7, and Ejy 4, E,,, 4, and

w 4 diagrams are given in Figs. 4, 5, and 6, respectively.
In these diagrams a wiggly hne triangle 1jk with 1 as an
external point represents

Lf3(ryre) — 118wa (71 )8uwa (F 1 )8aa (P
whereas a plain triangle ijk represents
[F5(ry,ma)

As in Ref. 7, a cross on a side ij of the triangle indicates

— 11844 ¥i)8uaa (i aarspc) -

o
N

P
,
s
YA

-Q

—

»
no

(4.10)

4.1

FIG. 4. Four-point E}; diagrams.
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(5.1) {5.2) (5.3)

FIG. 5. Four-point Ef,, diagrams.

that the factor g,y or g4y is to be omitted.
The equation (2.10) for R,,x =w,d becomes

R,=p [ d* (g —1—Nyy—Crq—EE—E%)
—3p [ @3r(gua— 1) Ny +2E5; +2E])
—p [ drg i B+ 5Co) + EE+EL (3.7

where EL}(r) [EL)(r)] are sums of E,,(r) diagrams that
contain [do not contain] a three-body correlation connect-
ing the two external points. For example, diagrams (4.1),
(4.3), and (4.4) of Fig. 4 contribute to Ewd4 while the rest
contribute to Ewd 4
The bonds gu(r)—1 and g,u(r)—1 do not change
much when three-body correlations are added to the wave
- function. Thus following Ref. 7 we assume that the scal-
“ing factors s,, for the E£, do not change by switching on
the three-body correlations. The f is set to one and the
sy are calculated as discussed in the preceding section.
The contribution of Exy diagrams is generally smaller

4
3 e ¥
(6.1)
4
3 2
(6.3)
4
3 2 3 2
f [
(6.5) 4 (6.6)

1

FIG. 6. Four-point E;, diagrams.

than that of the Ef, diagrams. The Ej;(r) changes sign’
at r ~0.50, and it is unlikely that a scaling approximation
for the total Ej; is valid. Hence in Ref. 7, and in the
present work all five or more point E, s, diagrams are
neglected. We also neglect Eww4 for reasons discussed
later. Thus in practice the f3 is switched on after comp-
leting the Jastrow calculation, and the HNC equations for
J + T are solved with E£, and EZ given by the scaling ap-
proximations and

E§J=Eéd,4, Elixi =E15xl,4 )
(3.8
Ey=Eu4, Ei=FEg4; Eu=0.
At equilibrium density the calculation described above,
carried out with the wave function of Ref. 7, gives

Typ=14.8 K, in close agreement with Tyz=14.72 K,

-and normalization p(r;»=0)=0.95p. It thus satisfies the

known identities to a reasonable accuracy. However, if we
take

El,=El,,, (3.9)

the T\p=18.8 K and p(ry;+=0)=1.065p. The kinetic

energy identity is particularly violated, and so it appears

that it is better to neglect E.,, than to approximate it with

E 4 Crude numerical studies of E,,, s (» =0) show that

at least at r =0, Eww s is of the order of magnitude of
E,,, 4 but opposite in sign.

IV. RESULTS

In this section we present the results obtained with real-
istic J + T wave functions of Ref. 7 at three densities. In
addition to the triplet correlations these wave functions
contain an optimized pair correlation having the asymp-
totic behavior

mec 1
(r J=l——, CRY)
flr=e 2 ‘
a consequence of the long-wavelength phonons.!® Here ¢

is the velocity of zero sound. It may be easily verified
that this asymptotic behavior of f implies the following
asymptotic conditions for the nodal functions:

me 1
Nyy(r—>oo)= n"ﬁp ‘r‘z“ N : (4.2)
Nw(r—>oo)=Ndd/2 ’ 4.3)
ww(r—0)=Ngg /4, ' (4.4)
and the n(k),
mc 1
n{k-—s0)=ng 7% K - 4.5)

The results of our calculations are given in Tables II
and I, and Figs. 7—9. The results of the full calculation
are labeled J -+ T, while those labeled J are obtained on
switching off the triplet correlation. The GFMC results
are taken from a calculation by Whitlock and Panoff.!”
In all these results n (k) is normalized such that

[ ntiod®e=1. (4.6)



TABLE II. kn(k) with the J + T wave function at various
densities.

0.438

] Y_B) 0.365 0.401
k(AT

0.05 . 00167 . 0.0136 0.0106
0.25 -0.0318 0.0264 0.0208
0.45 0.0416 0.0349 0.0279
0.65 0.0458 0.0391- 0.0318
0.85 0.0455 0.0398 “0:0331
1.05 0.0417 0.0377 0.0324
1.25 0.0350 0.0332 0.0298
1.45 0.0264 0.0266 0.0253
1.65 0.0175 0.0190 0.0196
1.85 0.0112 0.0129 0.0144
2.05 0.0091 0.0105 0.0117
2.25 0.0084 0.0097 0.0109
2.45 0.0066 0.0080 0.0094
2,65 0.0045 0.0058 _0.0072
2.85 0.0029 0.0041 0.0054
3.05 0.0019 0.0027 _0.0039
3.25 0.0012 0.0018 00027
3.35 0.0007 0.0011

In general we find that the triplet correlation by itself has

little effect on the n (k). The n(k) is seen to decrgase ex-,

ponentially for k >3 A~lin Fig. 7.

. The kn(k) obtained from the neutron scattering
data3’18 is compared with theoretical results in Fig. 8.
Both the experimental and the GFMC 7 (k) do not have
the correct k—0 asymptotic behavior. The difference be-
tween GFMC and J -+ T results has to be attributed to (i)
the approximations in the use of J 4+ T wave function, and
those in the HNC/S calculation; and (ii) the finite box size

IO° T T T I

/AN AREL

T Illllll
1 ||||II|

T
!

nik)

T lllllll
ol

T
1

IO-3 | ! 1 ! 1

2.0 3.0 ' 40

k(A1)

FIG. 7. n(k>2 A~") of the J and J + T wave functions at
p=0.3650"3 on log scale. Here n(k) is normalized according

to Eq. (2.19).
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0.02 _
° 2 30 70
FIG. 8. n(k) is normalized according to Eq. (4.6). The

dashed and solid curves are the results of the present calculation
with the Jastrow (J) and Jastrow -+ triplet (J 4 T) wave function,
respectively. The dashed-dotted curve gives GFMC results
from Ref. 17. The experimental data (Refs. 3 and 18) are shown
with the crosses.

in the GFMC simulation. The latter effect is particularly
manifested at small k. The difference between theory and
experiment may be mostly due to the inadequacy of the
Aziz potential, or the impulse approximation used in re-
lating the n(k) to neutron scattering cross sections at
large momentum transfer. The use of impulse approxi-
mation for analysis of scattering from hard core liquids
has been recently criticized.!® There certainly is more

o | °
o.0s|- oFMC (Aziz) 7\ |
/Vurm’noncl (Aziz)
GFMC(LJ)
] 1 J | | 1 | |
0.365 0.375 0385 0385 0405 0415 0425 0435 0445
- plo™3)

FIG. 9. Comparison of the theoretical and experimental con-
densate fraction. The solid curve shows the results of this work
with Aziz potential. The open circles, joint by a dashed-dotted
line, are the results of GFMC calculation with Aziz potential
(Ref. 17). GFMC results with Lennard-Jones (LJ) potential are
shown with open squares (Ref. 22). The crosses represent the
results of Puoskari and Kallio (Ref. 12) variational calculation
using LT potential. The solid circles with the error bars show
the data taken from Ref. 2. The dashed line is a guide to the
eye. The triangle gives the experimental result at the equilibri-
um density of Ref. 3.
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TABLE III. Results with optimized J and optimized J + T wave functions.

Condensate fraction

Kinetic energy (K)

pc™ Sad Sud Suw J J+T GFMC TupJ + T) TEJ 4+ T)
0.365 2.44 2.24 2404  0.098 0.092 0.092  14.86 14.72
0.401 2.78 2.780 2.916 0.07t 0.065 0.052 18.17 17.45
0.438 3.12 3.120 0.043 20.53

3.280 0.048

than qualitative agreement between theory and experi-
ment, marred by significant differences at k =0.5 and 2.3
A ~1. The density dependence of the J + T n(k) is given
in Table II. The r (k) becomes broader as the density is
increased. ) C

The condensate fraction and the kinetic energies are
given along with the scaling constants, in Table III. At
p=0.4380"3 the Tp is ~ 10% larger than the T indi-

cating increased importance of the neglected E;y dia-

grams.

The theoretical and experimental condensate fractions
are compared in Fig. 9. At equilibrium density and
GFMC and J + T values of ng are identical, but they are
~20% below the values deduced from neutron scattering

22.99

experiments. The density dependence of the J+ T ng is
in crude agreement with that of Ref. 2. On the other
hand the experiments of Wirth et al.?° have shown no
density dependence of ny, while Mook?! finds a much
stronger decrease in np with p.

ACKNOWLEDGMENTS

The authors wish to thank Dr. R. O. Hilleke, Dr. R. M.
Panoff, Dr. D. L. Price, Dr. V. F. Sears, Dr. R. O. Sim-
mons, Dr. P. E. Sokol, and Dr. P. A. Whitlock for com-
municating their results. This work was supported by the
U.S. Departmient of Energy, Division of Materials Sci-
ences, under Contract No. DE-ACO02-76ER01198.

*Present address: Department of Physics, Aligarh Muslim
University, Aligarh 202001, India.

IF. London, Nature (London) 141, 643 (1938); Phys. Rev. 54,
947 (1938).

2p. E. Sokol, R. O. Simmons, R. O. Hilleke, and D. L. Price
{unpublished).

3V. F. Sears, Phys. Rev. B 28, 5109 (1983).

4V. F. Sears, E. C. Svensson, P. Martel, and A. D. B. Woods,
Phys. Rev. Lett. 49, 279 (1982); V. F. Sears and E. C.
Svensson, Phys. Rev. Lett. 43, 2009 (1979); A. D. B. Woods
and V. F. Sears, Phys. Rev. Lett. 39, 415 (1977).

SM. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester,
Phys. Rev. B 24, 115 (1981).

6R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T.
McConville, J. Chem. Phys. 70, 4330 (1979).

7Q. N. Usmani, S. Fantoni, and V. R. Pandharipande, Phys.
Rev. B 26, 6123 (1982).

8S. Fantoni, Nuovo Cimento A 44, 191 (1978).

M. L. Ristig, P. M. Lam, and J. W. Clark, Phys. Lett. 55A, 101
(1975); P. M. Lam and M. L. Ristig, Phys. Rev. B 20, 1960

(1979).

10A . Fabrocini and S. Rosati, Nuovo Cimento D 1, 615 (1982).

11Q. N. Usmani, B. Friedman, and V. R. Pandharipande, Phys.
Rev. B 25, 4502 (1982).

12M, Puoskari and A. Kallio, Phys. Rev. B 30, 152 (1984).

13Daniel Shiff and Loup Verlet, Phys. Rev. 160, 208 (1967).

14M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9,
2178 (1974).

ISK. Schmidt, M. H. Kalos, M. A. Lee, and G. V. Chester,
Phys. Rev. Lett. 45, 573 (1980).

16],, Reatto and G. V. Chester, Phys. Lett. 22, 276 (1966).

17p, A. Whitlock and R. M. Panoff (unpublished).

18y_F. Sears (private communication).

193, J. Weinstein and J. W. Negele, Phys. Rev. Lett. 49, 1016
(1982).

20F, W. Wirth, D. A. Ewen, and R. B. Hallock, Phys. Rev. B 7,
5530 (1983).

21H. A. Mook, Phys. Rev. Lett. 51, 1454 (1983).

22p, A. Whitlock, D. A. Ceperely, G. V. Chester, and M. H.
Kalos, Phys. Rev. B 19, 5598 (1979).



