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We investigate numerically the ground state of two holes in the two-dimensional ¢-J model, by means of the Green function
Monte Carlo method. A critical value of J, J.~0.3¢, is found such that d-wave binding of holes only occurs for J> J,.

One of the interesting models, that captures im-
portant aspects of the environment experienced by
the system of electrons in the copper oxide super-
conductors, is the r-J model [1]. A number of the-
oretical approaches have been devoted to the solu-
tion and understanding of the implications of the
model. In two or more space dimensions, however,
it lacks exact solution as it presents a genuine quan-
tum many-body problem of strongly interacting par-
ticles on the lattice [2]. The plethora of different re-
sults obtained by various approximations has created
a certain degree of confusion as to what exactly hap-
pens, i.e., the nature of the phase diagram and the
consequences of the model in general. A numerical
approach might appear as an obvious alternative that
could provide the solution of this model. Exact dia-
gonalization studies of finite-size clusters [3] are
limited to small-size lattices (a typical case is 4 X 4)
and thus it is not possible to perform a reasonable
extrapolation to infinite-size lattice. Furthermore,
world-line or other Monte Carlo simulation methods
are hindered by the fact that one needs to introduce
many Hubbard-Stratonovich auxiliary fields due to
the nature of the interactions in the model and in
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addition by difficulties arising from the fermion
“minus” sign problem.

Recently, we proposed a stochastic method which,
in principle, is exact and we successfully applied it
to study the problem of a single-hole on large square
lattices [4]. The general method is known in the
many-body computational physics [5] as Green’s
function Monte Carlo (GFMC) method and it is a
projection technique; the key point of the method is
that one has to have a suitable starting and guidance
functions from where the true ground state can be
projected out within a relatively small number » of
applications of a projection operator G. If the start-
ing state is not a good approximation to the true
ground state many more operations of G would be
required; thus, in a fermion Monte Carlo method
where the signal to noise ratio decreases exponen-
tially with n, the signal gets lost much before any sign
of convergence is observed.

An important question is the existence of pairing
in the t-J model in the physical region (J/t<1).
While it is believed that in the large J/¢ limit the holes
tend to stay close to each other to minimize the dam-
age to the antiferromagnetically coupled bonds, in
the physical region the situation is much less clear.
Exact diagonalization studies [3] suggest that there
is binding of holes in a d-wave ground state in a wide
part of the physical region (at least for J/¢>0.2).
However, there are reasons to suspect that the rel-
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atively small size of the lattices studied by exact dia-
gonalization may not afford a reliable prediction of
the physics of the infinite system.

In this paper we apply the GFMC method to study
the problem of binding of two holes in a d-wave state
in large square lattices. We have tested our method
by calculating the energy for one and two holes on
a 4 X 4 lattice and they are in excellent agreement with
the results of the exact diagonalization [3] for all
values of J/t considered in this paper. When our cal-
culation is extended to large lattices we find that the
value of the binding energy 4 is significantly re-
duced; for example, we find that at J/t=1 the value
of 4 1s reduced by about 35% and at J/t=0.4 we ob-
tain 4/t~ 0.1 which is about three times smaller than
their corresponding value on the 4 X 4 lattice. We find
that there is a finite value of J=J.~0.28¢ below
which there is no longer a two-hole bound state.

Let us start from the Hamiltonian of the /~J model
in order to establish our notation,

H=—t Y (dLas+hec)+J Y (s;-s,—1Aah),
s >
(1)

where af,=¢l,(1—#;_,), ] being the creation op-
erator for an electron with spin projection s at a lat-
tice site i and where A,=>.,¢%¢é;, is a number oper-
ator; 4, creates an electron only on an empty site,
thus avoiding double occupancy. The spin operator
s; is associated with site i/ and is defined as

§i= % Z 5%%;;&;; ,
ap

where & is a vector of Pauli matrices. We consider a
square lattice of N=L X L sites with periodic bound-
ary conditions.

The basic elements of the GFMC method and our
application to the - model are described in ref. [4].
This method provides the ground state expectation
value @ of an observable @ from the sequence

(Pr|GOG"|¥r>

0= i ,
(Fr|G? e

(2)

in the limit O=lim,_,, ©“. Here | ¥ is an initial
state not orthogonal to the ground state | %,> and G
a projection operator which projects out | ¥,» from
| ¥r>, namely | W) oclim, ., G| ¥r>. If the spec-
trum of the Hamiltonian H of the system is bounded,
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as is the case of (1) on a finite lattice, a convenient
choice for G is G=E—H with E>E,,,,, the largest
eigenvalue of H. A Monte Carlo implementation of
this scheme consists of evaluating (2) as an average
over the random walks of .4 independent walkers
through the configuration space. The quantity ¢
must be computed for increasingly larger # until con-
vergence is observed, within statistical error bars. We
use a scheme known as “forward walking” (see ref.
[5]) to compute the ground state two-hole distri-
bution, whereas the ground state energy is evaluated
as explained in ref. [4]. The difficulty, in the case of
the t-J model and other fermionic problems, is that
the matrix elements {c|G|c’ > are not all positive.
This results in large statistical fluctuations of the
quantity ¢ as n increases; this is known as the
“minus” sign problem [5]. Thus, it is very impor-
tant for the success of the method to have a suitable
initial and guidance functions to be able to find con-
vergence at small n before the statistical fluctuations
grow significantly.

Our calculation is based upon an initial state for
two holes which is a generalization of the string-based
variational state used in the single-hole calculation
[4,6] and on the same guidance function used in the
calculation for a single hole. We define the correlated
two-hole state as follows,

¥ (Q)>= RZ (=1 exp[ —iQ- (R+r/2)]

xFQ(r)exp(—% Z,ugffff)g(r)amanm ley,
i<j
(3)

where the sum runs over all lattice sites R and over
all lattice spin configurations |c¢) ={{sf}>. L(c) is
equal to the number of “down” spins in one of the
two sublattices. The operator

exp(—% Y u,»,-ff’f)

i<j
is a spin—-spin correlation operator and the function
u; depends on the distance between the two sites i
and j. Here Q is the total momentum of the state and
r is the relative distance of the two holes. The “string”
correlation operator,

Fo(N=1+Y (@ N%+Y fu (Q NP 2, (4)
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with a= = £, £y connecting two nearest-neighboring
(n.n.) sites and

'@= Z d}st-i-as s
Rs

where f,(Q, r), f2o- (Q, r) are variational parameters.
This operator generates “‘strings” of spins displaced
by one site along the hole path. The energy expec-
tation value is minimized by taking g(r) to be non-
zero for only n.n. and with d-wave spatial symmetry,
i.e. g(t£)=—g(=xy), which corresponds to a sin-
glet state of the two holes. With this choice of g the
variational parameters f,, f..- can be computed ap-
proximately analytically by minimizing the energy
expectation value and taking #=0, as in the single-
hole case [6]. In our calculation we allowed for
strings of length one only, i.e. we set f,, (Q, r)=0.
We found that allowing for strings of length two can
improve the initial variational energy but has little
effect on the convergence to the true ground state.
We restricted our calculations to @= (0, 0) and in
this case f,(Q, r) =f,, with f; real. As we did in the
single-hole calculation, we used as guidance function

?’Gzexp<— iy u,-js,?sf) .
i<j

Let us call E{}’ the transient estimate for the ground
state energy of the system with M holes at the nth
iteration which corresponds to the mixed estimate
[4] after 2n iterations and E,, the extrapolated value
as n—oo. In fig. 1 the transient estimation for
SE{™ =E{™ —E, on a 4X4 lattice (open circles) is
compared to the results of the exact diagonalization
(dashed line) for J/t=1. Notice that it is possible to
obtain sufficient evidence of convergence; upon av-
eraging the data from the last three iterations shown
we obtain an estimate of 8E,/t=0.43+0.01 ona 4 X4
lattice in agreement with the exact value of 0.42. This
gives a value for 4/t=08E,/t—28E,/t=—0.90+0.03,
using the single hole energy 8F, = E; — E, calculated
in ref. [4] for k= (in, in). In fig. 2 we present re-
sults for 4 on an 8 8 lattice also for J/t=1. If we
average the values of the last two iterations shown in
fig. 2 we obtain 4/t= —0.59 +0.03 about 30% smaller
than the value calculated on the 4 X4 lattice. As we
shall see below, our results show that the two-hole
energy estimates on a 10X 10 lattice are indistin-
guishable within our error bars from those obtained

PHYSICS LETTERS A

5 July 1993

150 — -

I/t=1 (4 x 4)

1.00— —
L s 4

SE(2)/t

0.50 — exact

Co Lo L s I
0 5 10 15 20 25
GFMC iterations

Fig. 1. Transient estimation of the two-hole ground state energy
8E, on a 4x 4 lattice at J/t=1.0. The dashed line refers to the
exact diagonalization result {3].
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Fig. 2. Transient estimation of the binding energy 4/t on an 8 X8
lattice at J/t=1.0 obtained from E{® (open circles), and &4
(diamonds). The dashed line refers to the n—oo extrapolated
value.

on the 8 X 8 lattice. A similar conclusion was drawn
in ref. [4] for the single-hole energy estimates which
remained also unchanged beyond 8 X8 in the range
J/t=0.2.

A simple scheme [7] which accelerates the speed
of convergence to the ground state at no additional
computational cost consists of considering the ex-
pectation values &5 of the Hamiltonian with the
state | x> =(1+4,G7|¥;>, 1, being a variational
parameter determined by minimizing the value of
&5 . £5™ yields a better ground state estimate than
E{™, owing to the greater variational freedom of the
state |x,)> compared to G”| ¥ ). The improvement
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1s particularly important at small #, when the dif-
ference between successive values of E$ is larger;
this is shown in figs. 2, 3, where we compare the val-
ues of 8&4 =&4 —E, (diamonds) and SES™
(circles).

The dotted lines in figs. 1-3 correspond to a fit us-
ing the expression: E{") ~ E,+ fexp(—kn), using E,,
S and x as fitting parameters. This expression can be
derived from eq. (2) as n—oo, where k is propor-
tional to the energy gap between the ground state and
the first excited state of the system. We find that E,
is the best determined of the three parameters. We
obtained the same extrapolated estimates, within
statistical errors, for E, by fitting both the data for
E{™ and &4 with this expression. These estimates
are reported in the first column of table 1.

tor- - ° J/4=0.4 (Bx8)

A/t

00—

P o T N B B
[¢] 10 20 30 40
GFMC iterations

Fig. 3. The same as in fig. 2 for J/¢t=0.4.

Table 1

Two-hole, single-hole and binding energies estimated by GFMC
on lattices of size L, for J/r=1.0, 0.7, and 0.4. The statistical
errors (in parentheses) correspond to the last two digits.

PHYSICS LETTERS A

J/t L 3E,/t 8E,/t A/t

1 4 —0.42(01) —0.66(01) —0.90(03)
6 —0.30(02) - -
8 —~0.26(02) -0.42(01) —0.58(04)
12 - —0.42(01) -

0.7 8 —1.34(03) —0.50(01) —0.34(04)

0.4 4 —2.98(02) —1.32(01) —0.32(03)
6 —3.07(03) - -
8 —3.08(03) —1.48(01) —0.12(04)
10 —3.08(04) - -
12 - —1.48(01) -
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We now turn to a value of J/t (J/t=0.4) closer to
the physical region. For J/t=0.4, on a 4X 4 lattice
and in n~20 iterations we obtain OF,/t=
—2.94+0.03, in good agreement with the value
—2.993 from the exact diagonalization [3]. In fig.
3 we show our results for 4 on an 8 X8 lattice ob-
tained from E, (open circles) and from &, (dia-
monds) both giving an extrapolated value for 4/
t=0.12£0.04. Our extrapolated value for 8F, for the
10x 10 lattice (see table 1), indicates that its value
for the infinite lattice is not significantly different
from that for the 8 X 8 lattice. Despite the size of the
error bars, these results indicate rather clearly that
the magnitude of the binding energy is considerably
reduced, namely from a value of 0.349¢ on the 4Xx 4
lattice to about 0.17 on the 8 X 8 lattice.

The main contribution to the significant finite-size
effects found for 4=06F,—28FE, at both values of
J/t arises from 8E,. This is consistent with the ex-
pectation that the addition of a second hole partly
repairs the long-range part of the distortion of the
antiferromagnetic order caused by a single hole.
Consider, for example, the long-range planar distor-
tion of the antiferromagnetic moment of the spin
background dm'~k-#/r, caused by the motion of a
single hole [2,6] of momentum k. In a two-hole state
with total momentum equal to zero the distortions
caused by the two holes have opposite signs.

We have computed the two-hole distribution func-
tion and the r.m.s. hole separation distance R, .
We have extrapolated R{?) . to the n—oo limit by
fitting the values obtained at different GFMC iter-
ations with an exponential. We find R, =
1.411+0.02 for J/t=1 in agreement with the one from
exact diagonalization [3] for the 4X 4 lattice and
R, s =1.4710.03 on the 8 X8 lattice. At J/t=0.4
and on a 4 x4 lattice we find R, =1.6110.04, in
agreement with the exact value within error bars and
R, s =2.0710.04 on both 8 X8 and 10 x 10 lattices.
The distribution function and further details of the
calculation will be given elsewhere [8].

Our results suggest that in the infinite lattice limit,
A4 decreases rapidly with decreasing J/¢ in contrast
with the results on the 4 X 4 lattice where 4 seems to
vary mildly with J/t. In small lattices (4X4) the re-
sults of our calculation (the same as those obtained
by exact diagonalization ), show that in a wide region
of J/t (0.2<J/t<w0), A~ —0.8J (which is the t=0
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value of 4). For a d-wave bound state there is always
a threshold value of J=J. below which there is no
two-hole binding [9]. In order to find an expression
to extrapolate our data and estimate J, we assumed
that the hole—hole interaction is short-ranged and we
modeled the problem of two holes in a quantum an-
tiferromagnet by a simple problem of two quasipar-
ticles moving in the square lattice in a band E(k)
and feeling a n.n. attraction of the order of J'. This
problem can be solved exactly, up to a two-dimen-
sional integral, for a singlet d-wave ground state us-
ing the method of ref. [10]. In the limit of small
binding energy 4 and with an E(k) having a mini-
mum at go=(in, in) and

E(k—qo)=Eo+11q97 +1593,

where g, and g are deviations of & from ¢, along the
directions (0, 0) > (m, n) and (0, n)—~(x, 0) re-
spectively, we obtain [8]

1 = L [1—=y'A"In(A" /€' )] .

J T

Here all energy scales are in units of 77 and there is
a term linear in A which has been conveniently ab-
sorbed in the cutoff energy scale ¢’ in the logarithm
and the higher order terms in 4’ have been omitted.
Assuming that the function ¢t/J=f(4/t) has a sim-
ilar expansion around 4/¢=0 (i.e., t/J around ¢/J.)
we obtain

£_L<1 L)
J I\ tlnd/e))’

where we have omitted terms of order (4/1)? and
[(4/1)In(d4/€)]% A simple fit to our extrapolated
(L—oo) values of 4 for J/t=0.4, 0.7 and 1.0 (table
1) gives J.~0.28¢.

Since A(J/t<0.4) <0.1¢, our calculation suggests
that the actual value of J/¢ in the copper oxide su-
perconductors (taking :~0.5 ¢V) cannot be much
different than J/r=0.4 if this model is relevant for
their superconductivity. There is an open question,
namely, what happens if a finite fraction of holes is
introduced in the infinite square lattice. The exis-
tence of a two-hole bound state is a necessary con-
dition for a many-hole pairing instability to occur, to
the extent that the system can be approximated by
a continuum system where holes interact via a two-
body potential [9]. Another possibility is that phase
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separation may take place for some range [11] or at
any value of J/t [12].

The calculations were performed on a cluster of
several IBM RS6000 workstations and required sev-
eral months of CPU time. This work was supported
by the Office of Naval Research under contract no.
N00014-93-1-0189 and by the Supercomputer Com-
putations Research Institute which is partially funded
by the US Department of Energy under contract no.
DE-FC05-85ER-250000.
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