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We explore certain aspects of the problem of a quantum antiferromagnet (QAF) with and without holes using
an interesting analogy with the problem of helium liquids. Density fluctuations in liquid *He correspond to
spin-waves in the QAF; holes introduced in the QAF couple to the spin-fluctuations in a similar way that
3 He impurities introduced in liquid *He couple to the density fluctuations of the liquid. We generalize the
ideas of Feynman-Cohen introduced for the problem of Helium liquids to the case of holes in a QAF. We
find that the mobile-hole creates a long-range dipolar spin-backflow which has interesting consequences for

the hole-band and the hole-hole interaction.

There are arguments suggesting that the copper
oxygen based high temperature superconductors are
systems involving strongly correlated electrons. In
the simplest case, certain aspects of the behavior of
correlated electrons could be described by the t — J
model? given by

et Y deso+d X (65— giiny), (1)
i,3(i)e <ij>

and its generalizations. Here ¢;, is a hole creation
operator, 8; is the spin-% operator and ¢ the electron
hopping matrix element. The notation j(i) means
that the summation is over all four nearest neighbors
(n.n) j of the site . The strong on-site Coulomb
repulsion is taken into account by restricting the ac-
tion of the Hamiltonian operator in a subspace of
the Hilbert space having states with singly occu-
pied sites. The ¢ — J model can be supplied with
a next-nearest hopping term as well as other addi-
tional terms in order to more realistically represent
both the strong-coupling limit of the Hubbard model
and the physics of strongly correlated electrons. Our
point here, however, can be made with the aid cf
the above simpler model and our conclusions should
be appropriately modified when such terms are taken
into account.

At half-filling the model reduces to the spin-3
Heisenberg antiferromagnet, which has significant
phenomenological success with respect to certain
magnetic properties of the undoped materials.2 A

series of techniques and ideas have been applied to
study the motion of a hole and the possibility of
pairing between holes in the £ — J model. In partic-
ular, we wish to mention the work of Shraiman and
Siggia3 who have pointed out that a mobile-hole
in a QAF causes a coherent rearrangement of the
spin-background around the hole creating a coherent
long-range dipolar distortion of the staggered mag-
netization field. Such distortion has been thought to
cause a transition to a spiral phase at any finite hole
concentration in a quantum antiferromagnet.4
Here, we shall discuss an interesting analogy of
the problem of holes in a QAF to that of *He impuri-
ties in liquid *He and explore certain ideas which had
been applied to study the latter problem. We gen-
eralize the ideas of Feynman-Coha&n5 for the motion
of an impurity in a dense quantum Bose liquid to the
problem of a hole excitation in the £t — J model. It
is known that a mobile impurity, introduced in such
a liquid, strongly couples to the density fluctuations
of the system in a way that a coherent distortion of
the density field at long-distances occurs to accom-
modate the impurity motion. This distortion has a
classical analogy in hydrodymamics where it is known
as backflow current. The same phenomenon occurs
in the case of a hole in a quantum antiferromag-
net, where its motion is hindered by the antiferro-
magnetic alignment and thus the hole strongly cou-
ples to the spin-fluctuations of the antiferromagnet.
This results to a coherent rearrangement of the spin-
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corresponding to a coherent long-range dipolar spin
rotation. We also find that as a result of this long-
range distortion, holes with opposite momenta, in a
certain range of the angle 8 between the vectors k
and 7, feel an effective attraction.

The analogy of hard-core Bose fluids with spin
systems was first pointed out by Matsubara and
Matsuda6 who have shown that liquid *He, when
approximated as a quantum lattice-gas model, is
equivalent to the ferromagnetic spin-3 Heisenberg
model. Here, using a unitary transformation of the
basis’, we make use of this analogy for quantum
antiferromagnets (AF).

Let us consider the case of no-hole, where the
eigenstates of this model can be expressed as |¥ >=
PN Y{F(-1)ED|{7:} >, where the configura-
tion |c > is labeled by the location of the up-spins,
e, |c >= |71, T2 P, >= shsh sk [F >0 |F >
is the ferromagnetic state with all spins pointing
down and N, is the number of spins pointing up.
The amplitude ¥({#;}) is symmetric under exchange
of any two coordinates 7;,7;, and $({ri}) = 0, if
7 = 7; for any pair i,j. Thus, in this formula-
tion, spins pointing up can be regarded as “hard-
core” bosons. The phase (—1)X) (L(c) is the num-
ber of up-spins in one sublattice) is separated from
the amplitude 7 in order to have a non-negative 1
for any ground state conﬁguration7. In this rep-
resentation, it can be shown that the eigenvalue
problem, H|¥ >= E|¥ >, reduces to a difference
equation, for ¥({}), identical to the many-particle
Schradinger equation on a square Jattice. It de-
scribes a quantum lattice-gas of bosons with “mass”
m = 2/J (we use units where the lattice constant
a = 1 and ki = 1) interacting via a pair potential V;;
having an infinite on-site repulsion (V (7= 0) = oo0),
Vi; = J if ij are n.n; otherwise V;; = 0.

The ground state of a Bose-fluid has a broken
symmetry, the Bose-condensate, which in the mag-
netic language corresponds to AF long-range order.
A simple and non-trivial ground state wave func-
tion which takes into account short-range correla-
tions due to the existence of the hard-core is the
Jastrow wave function ¥o({7:}) = [lic; fij. where
fij=0fori=jand fi > 0fori# janditis

number operator counting the “particles” (up-spins)
by sf + % we can go back to the spin variables. We
obtain the Marshall’ state

o >= (1) ezp(~3 S ugeis)le >, ()

c i<j
where the sum over i,j now runs over all pairs of
sites. The summation over c is over spin configu-
rations having N, spins pointing in the positive z
direction. If we extend the sum over all possible
configurations, then the state (2) takes the follow-
ing form

o >= eap(—3 Swsdid)lo>. ()
i<j

Here |¢ > is the Néel state with antiferromagnetic
order in the z direction, i.e., a product over all sites
of states | £ & >i= Z(l+ > +|— >;) which are
eigenstates of 37 with eigenvalues +1/2 or —1/2
when the site i belongs to the A or B sublattice re-
spectively. The variational state (3) is characterized
by antiferromagnetic order with < 8 >=< §; >= 0
and < §f >= +m!, where the value of the staggered
magnetization m! depends on the function u. If we
restrict the sum in (2) over configurations with zero
z-component of the net spin (i.e. Ny = N/2), we
find that < 87 >=< &8¢ >=< 3 >= 0; however
each of the two correlation functions < §78% > and
< 8¥3¥ > at large distances approaches the value
1(—1)y*im!? while < 3757 > approaches zero.

The elementary excitations in the Bose-system
are density fluctuations which in the magnetic system
correspond to spin-waves. The zero-point motion
of the long-wavelength modes of the Bose-system
(zero-sound) gives rise to a long-range tail in the Jas-
trow wave function. For a square lattice spin-% quan-
tum antiferromagnet we obtain8 u(r — 00) = 75,
¢ being the spin-wave velocity. The optimization
of the Jastrow wave function (u;;) has been carried
out by Liu and Manousakis 8 who used the varia-
tional Monte Carlo (VMC) technique by both min-
imizing the ground state energy and by satisfying
sum-rules in a self-consistent way. Their wave func-
tion gives —0.6639J for the ground state energy per
bond which compares well with the presumably exact
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The same wave function gives accurate values for
the spin-wave velocity (¢ = 1.22 £ 0.024/2Ja) and
the moments of the Raman scattering intensity {M;
and M,), as compared with other techniques.8 Us-
ing the same value for the AF coupling J = 1500°K
found in Ref. 2 by fitting the temperature depen-
dent correlation length in pure La,Cu0O, (a system
presumably without holes), they obtain quite satis-
factory agreement with the observed values of ¢, M;
and M, for the same material.

In the Hilbert space with N, up-spins and one
hole a basis vector can be written as |R, {7} >,
where B # 7; is the hole position and #; the po-
sitions of the up-spins. The most general eigen-
state of (1) having N, up-spins can be written as
¥ >= Eﬁ,{ﬁ}(_l)L(c)‘I’(E {FHIR, {7} >. In
this representation, the Hamiltonian includes the
same boson kinetic energy and boson-boson interac-
tion terms as in the no-hole case and three additional
terms. The first two additional terms are the hole
kinetic energy whose “mass” is m), = 1/2t, and an
interaction potential between the hole and the bo-
son featuring an infinite on-site repulsion, and it is
equal to J/2 for nearest-neighbors and zero other-
wise. This describes the lattice Hamiltonian of an
interacting boson gas with an impurity and is anal-
ogous to the problem of a 2He atom in liquid *He.
Lastly, there is a term which involves a two- “particle”
exchange operator, and represents the exchange tak-
ing place between the hole and a nearest-neighboring
boson. A variational ansatz for the wave function
is obtained by multiplying the Jastrow wave func-
tion for spins by a correlation operator of the form
e~ Regp{ -5, (il — B) + Mty — D))} which
takes into account boson-impurity correlations. The
imaginary part can describe “backflow” effects, as in
the Feynman-Cohen treatment of the problem of a
3He impurity in liquid 4He; there, ¢ describes the
collective motion of *He atoms which move out of
the way in order to make room for a 3He impurity
to pass through, filling the empty space it leaves be-
hind. Due to this effect, the 2He atom inside liquid
4He has an effective mass which is larger than its
true mass. The form of the function ¢;(7; — R) can
be determined by imposing on the wave function the

long-distance behavior of ¢z() for two-dimensions,
is obtained as
. k7
$(7 = o0) = A(k)—5- (4)
If we go back to spin variables, the hole wave func-
tion, within a multiplicative constant, is given by

¥, >= Z kR o Z‘.(A.-+i¢.~)i:|¢ﬁ >, (5)
R

where |15 > is given by (2) with the difference that
there is no spin at site R. The functions ); and
é; are abbreviations for Az(7; — R) and ¢p(7; — ﬁ)
respectively and we should keep in mind that they are
functions of both the vector joining the hole with the
spin at 7 and of the momentum E. If we allow the
sum over configurations in the expression for |15 >
to run over all possible configurations rather than
just those with fixed number of bosons, we should
use (3) for ¢z > with a hole at R. This state has a
well defined direction of the staggered magnetization
(z direction).

Next, we show that the A and ¢; correlations
can also be interpreted as local spin rotations and
are necessary in order to relieve the local spin envi-
ronment from the incoherence created by the hole
motion. First, we set « = 0 in the state (5) which
can be written as

1 e
192 >=—=3" e *HR> [] Ix(7) >+, (6)
v Mﬁe:t 7i#R

where
IX(7}) >p= e Qiti®di |45 > (7

and | & & >; are eigenstates of 37. The state x(7})
after normalization can be expressed as |x(7;) >4+=
ezp(—i0Fh; - ¢ — idi8%)| £ & >i, where & are the
Pauli matrices and #; = (—sin(¢;), cos(¢;),0). This
state can be interpreted as a local rotation of the
spin vector which points in the +2 direction by an
angle ¢; around the positive 2 axis and subsequently
by an angle §; around the vector #; out of the z —
y plane towards the positive direction. The angle
0% is related to the parameter ); as follows 6 =

2tan™! (tanh(%i)) and §; = —2tan! (coth(%i)).
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the problem can be solved analytically. The wave
function (7) can be parametrized as follows

[x(7) >a= pi] £ & >; +1/1 — pZei| T2 >;. (8)

The states (7) and (8) apart from a multiplica-
tive constant can be made identical provided that
the functions A;, &i, p:, w; are related in the fol-

lowing way ¢; = —tan‘l(%siwi). and

in/T=plconw; .
A= —%ln(m . In this form, the ex-

1-2p;4/1—plcosw;

pectation value of the J-term of (1) apart from a
constant is given by < V >= —-33p? and is
independent of w;. Therefore, the relative phase
w; can be found by minimizing the hopping energy
only. In an antiferromagneticaily aligned spin sys-
tem, when a hole moves to a nearest-neighboring
site it creates a state which is orthogonal to the
original state. In order to minimize the hopping
energy, one has to allow for maximum overlap be-
tween the initial and the final state, and this can
be achieved if the spins around the hole are in a
non-pure spin state. The overlap between the state
obtained by acting with H on (6) and the state (6)
itself attains its maximum magnitude by choosing
wp = —k-§. Choosing ps = p. the expectation
value of the Hamiltonian (1), within a constant, is
obtained as < H,_y >= —8tp”y/1 — p? — 6Jp? and
the optimal value of the parameter p lies in the inter-
val p. < p < 1 and depends monotonically on t/J
with p(t/J =0) =1 and p(t/J — o0) = p. = \/g.
The expectation values of the n.n. spin operators
is obtained as < 8% >4= +3(20% - 1), < 8§ >y=
o1 = prsin(k - §), < 82 >y= py/1 = picos(k - 6).

Far away from the hole, the problem can be
solved by expanding the energy expectation value
and keeping up to terms quadratic in A, ¢ and VA
and V¢. Minimizing the resulting expression we find
that the function A should decay within a few lat-
tice spacings from the hole, whereas the function ¢
has the behavior given by Eq. (4). The planar dis-
tortion a 1/r power-law at long distances from the
hole. There is a magnetization along the direction
orthogonal to plane which decays exponentially with
the distance from the hole and thus it is confined

In summary, the operator, e~*¥# rotates the
spin, which points in the z direction in the uncor-
related state, by an angle ¢; which behaves, at large

—\é*

distances, as in (4), whereas e~ generates the
magnetization along the z-direction.

The minimization of the hole energy with the
full wave function (5) which includes background
fluctuations has been carried out by Boninsegni and
Manousakis!0 who used the VMC technique. Their
results have been compared with exact diagonaliza-
tion results available only on small size lattices and
they are in reasonable agreement; the VMC calcula-
tion, however, has been carried out on much larger
size lattices also. They find that the minimum of the
hole energy-band is at (,%) and the effective mass
of the hole for the perpendicular directions around
the minimum is different. In fact, the hole effec-
tive masses in the direction (m,0) to (0,7) is much
larger than that in the perpendicular direction (0,0)
to (m, 7). Similar band-structure has been revealed
by a number of other approaches.3' 11,12 4, addi-
tion, the long-range distortion of the staggered mag-
netization, given by (4), remains after the inclusion
of the quantum fluctuations by allowing u;; to be dif-
ferent from zero. The ferromagnetic moment which
is perpendicular to the direction of the staggered
magnetization also remains and is localized in the
immediate neighborhood of the hole. However, the
ferromagnetic moment depends on k and it is zero
at the minimum of the band.

This type of distortion of the spin background
has been thought to cause a spiral phase4 at any
finite fraction of holes. The order parameter in such
phase is proportional to G, = m! x 8,mt. Using
our wave function for the case of a single-hole, we
find that at distances far away from the hole C}a ~
,_%[(I;— 2‘1’,_—'?5) - &] where o = &,7§.

Our qualitative picture of a single-hole excitation
in a quantum antiferromagnet is the following: We
separate the region around the hole into two parts,
the “core” region of approximate radius r. and the
region outside the core. The length scale r. is of
the order of the average length of the path of the
hole in the “string”-like picture of the Brinkman-Rice
approach and is an increasing function of ¢t/J. This
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energy excitations in the hole spectrum. Forr > r,
the spin background is coherently distorted from the
antiferromagnetic alignment by an angle given be Eq.
(4). The region of the “core” is characterized by a
ferromagnetic moment perpendicular to the plane of
the staggered magnetization which vanishes at the
minima of the hole band. If there is only a hopping
matrix element t' between different sublattices and
t = 0, there is no need for the creation of such
long-range distortion. However, when the hole is
delocalized and ¢t # 0, the presence of the long-
range distortion is necessary in order for the overlap
between two displaced hole states to be non-zero.

Within this picture of the quasihole, we find that
there is an effective long-range dipolar attraction be-
tween two holes. The origin of the attraction be-
tween holes with opposite momenta is the fact that
the least amount of damage due to the long-range
dipolar distortion of the staggered magnetization is
caused when the holes stay at opposite valleys of the
reduced Brillouin-Zone and close to each other. The
long-range part of the effective interaction can be es-
timated by using the non-linear o model to describe
the long wavelength limit of the Heisenberg antifer-
romagnet. From a semiclassical point of view, we
can estimate the long-distance part of the effective
interaction by calculating the difference between the
energy cost to create two quasiholes with opposite
momenta at infinite distance and at finite distance
r >>r.. We find

- 26
Vasslr 5> re,0) = ~e(BI22D, (q)

where 8 is the angle between the vectors k and 7.

Here, c(k) is a constant of order 1 which depends on
k. Hence, there is a 1/7? attraction for -1<6<L®
and ¥ < § < 5= This attraction is caused by
the dipolar distortion and as argued previously, is
expected to exist on more general grounds when a
hole is delocalized in an AF background. In addition,
the interaction given by (9) between a pair of holes
and other holes is weak once the holes in the pair
come sufficiently close to each other because the
distortion of the background is repaired. Thus, this
part of the interaction favors pairing and not phase
separation.
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