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Quantum systems with a large number of fermionic degrees of freedom are
intractable by quantum simulations. In this paper we introduce the concept
of a dedicated quantum simulator (DQS) which is an artificial system of
quantum dots whose Hamiltonian maps exactly to the original many fermion
problem. While the universal quantum simulator (UQS) introduced by
Feynman in 1982 can simulate any quantum mechanical many-body problem,
a DQS can only solve a particular many body problem. Our concept of the
dedicated quantum simulator is not a quantum computer but rather a
quantum ‘‘analog’’ device, dedicated to a particular quantum computation. As
an example, we consider the system of the CuO plane in the copper-oxide
superconductors and we propose an array of electrostatically confined
quantum dots to be used as its dedicated quantum simulator. We show that
this dedicated device can be used to image stripe formation as a function of
the electron doping using electric force microscopy. We argue that such a
dedicated quantum simulator may be easier to realize in the future compared
to a general purpose quantum computer.

1. INTRODUCTION

In simulations of quantum many-fermion systems large statistical fluc-
tuations arise due to cancellations among large amplitudes of configurations
differing by fermion exchanges. As a consequence, the computational time
required to obtain acceptable statistical errors grows exponentially with the
system size. This limitation is severe because only small-size systems can
be simulated and that prevents us from being able to extrapolate to the
thermodynamic limit. This is a general problem in several fields of compu-
tational physics and chemistry and it would be of general importance if a



computational instrument that simulates quantum fermion systems could
be constructed.
Progress in quantum computation1 has raised hopes that a realistic

computation using a quantum computer could be achieved in the future.
Feynman had conjectured3 that the quantum computer can be used to
simulate any local quantum system. Later, Lloyd showed4 that a quantum
computer can be programmed so that it can be such a universal quantum
simulator (UQS). Recently DiVincenzo et al.2 have proposed that a
coupled quantum-dot pair may be used to represent a q-bit. However, in
any attempt to design a general purpose quantum computer one needs
to find an approach to externally manipulate quantum mechanical states,
to preserve the quantum coherence of these states for some time and to
transport them at a macroscopic distance away before the quantum
information is dissipated.
In this paper we introduce the concept of a dedicated quantum simu-

lator (DQS) in contrast to the UQS. It will become clear that a dedicated
quantum computer to simulate a specific many-fermion model does not
require a controlled initial state or building quantum gates which also need
to be controlled. A DQS as defined in this paper, while it should be a system
without significant amount of impurities or other defects which could
create decoherence, it does not require from us to manipulate q-bits where
destruction of coherence can also occur. Thus, building a DQS is a more
realistic goal in comparison to building a universal quantum computer.
Our concept of the dedicated quantum simulator is not a quantum

computer but rather a quantum ‘‘analog’’ device, dedicated to a particular
quantum computation. Long time ago, before digital classical computers
became fast enough to carry out numerical integration or differentiation,
the so-called analog computers were used for that purpose. To obtain the
integral or the derivative of a function f(t), an electrical time-dependent
current, which changes in time in the same fashion as the function f(t),
was used as input to a circuit which contains a capacitor or an impedance.
For the integral or the derivative of the input function one would measure
the voltage across the capacitor or across the impedance respectively. No
digital computation was carried out by such a device, but the entire ‘‘com-
putation’’ was based on the physical property of the device used. A partic-
ular physical circuit was dedicated to a specific computation, i.e., the
capacitor circuit for integration, while the impedance circuit for differen-
tiation. In this paper we introduce a dedicated quantum simulator whose
relationship to a quantum computer is analogous to the relationship of
a digital classical computer to an analog classical computer. Notice that
we are careful and we use the term ‘‘simulator’’ as opposed to the term
‘‘computer.’’
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It is well known in statistical mechanics that the Landau–Ginzburg
model of a superfluid can be mapped onto the X–Y model. The X–Y
model can also describe the critical fluctuations of certain types of magne-
tic systems where the order parameter is a two component vector. Thus,
instead of using a digital computer to compute the critical exponents asso-
ciated with the superfluid to normal-fluid phase transition, one can study
the experimental results obtained on such a designed magnetic system
assuming that the connection (the mapping) of the magnetic system to the
X–Y model is accurate. One could therefore think of this model magnetic
system as a dedicated simulator of the critical properties of the superfluid.
The idea can be extended further to a pure quantum many body

system where we are interested in the statistical properties of that system. If
we could prepare a physical system which is described by a known model
quantum Hamiltonian, all we would have to do is perform measurements
of the desired observables. It is rather hopeless to expect that we could
configure atoms together to interact in our desired way as in the model
Hamiltonian. Quantum dots share many features with the atomic spectra
and they are sometimes called ‘‘artificial’’ atoms. The parameters defining a
quantum dot can be artificially controlled and designed. In addition, one
can create arrays of such dots where we can manipulate their interactions.
Therefore, if we could design an array of quantum dots interacting in a
similar way, the original physical system can exist at a very different energy
scale but as long as the model system (used in the simulation) shares the
same geometry and the same values of doping and dimensionless parameter
ratios one can directly compare dimensionless ratios of observables using
scaling. This is what we call ‘‘dedicated quantum simulator’’ and has
nothing to do with the functions involved in quantum computing, just in
the same way as the question of how a classical digital computer works is
irrelevant to the problem of an analog computation.
Making a quantum computer that performs operations which are

controllable at the so-called q-bit level is a far more difficult task than
making a device that can perform such a dedicated task to solve a specific
quantum many fermion Hamiltonian. The reason is that every nature’s
operation is quantum mechanical and thus we can ‘‘take advantage’’ of
that and instead of breaking down the problem into a huge set of classical
operations we prepare a many-body quantum system which is described by,
and thus can mimic exactly, the theoretical many-body Hamiltonian which
we wish to solve.
In this paper, we choose to give an example of a two-dimensional

quantum-dot array which can be mapped to a Hubbard-like Hamiltonian
identical to that used to describe the physics of the Cu-O plane of the high
temperature superconductors. This serves as model for the copper-oxide
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plane in the copper-oxide superconductors based on a quantum dot two-
dimensional array. The Hamiltonian which describes the quantum-dot
array does not contain phonons as degrees of freedom and thus, one can
determine the physical properties in the absence of phonons. The quantum-
dot system exists at an energy scale (a few meV) which is three orders of
magnitude smaller than that of real physical system. We think of this
system of the array of quantum dots as a quantum simulator of the physics
of the original system. We also discuss that this system should form stripes
at the appropriate filling factor in an analogous manner to that in the
copper-oxide superconductors. In addition, we discuss how to use this
model to study the formation of stripes in the original problem of the
copper-oxide planes.

2. THE QUANTUM DOT ARRAY

We wish to consider a two-dimensional electron gas (2DEG) which
forms in an AlxGa1−xAs/GaAs heterostructure. Such a heterostructure can
be grown by molecular beam epitaxy (MBE) on a n+ doped GaAs sub-
strate. On top of this layer one grows a layer of pure AlGaAs. Next, a layer
of pure GaAs is grown which has smaller gap than AlGaAs. The 2DEG is
formed in this last layer near the interface with the AlGaAs layer. A posi-
tive voltage applied to the n+ doped substrate controls the density of the
2DEG. Two-dimensional electron densities of the order of n=1011/cm−2

are desirable for the application described in this paper. A spacer of pure
GaAs between the substrate and the AlGaAs material may also be neces-
sary to increase the mobility of the electrons at the interface.
In this paper, we consider the case of the CuO plane of the copper-

oxide superconductors. For this example, we propose the metallic gate with
the hole pattern shown in Fig. 1, i.e., with an array of two different size
holes placed onto the heterostructure as the top electrode. Such patterns
can be ‘‘drilled’’ on a thin metallic plate with e-beam lithography. A nega-
tive gate voltage Vg is applied between this gate and the 2DEG.
First, let us consider a single hole of radius a created on the metallic

gate. At a distance d from the gate, the potential is modified from its value
in the absence of the hole by an amount dVa(rF) given by Ref. 7

dVa(rF)=−
Ea2

p
F
.

0
dk j1(ka) e−kdJ0(kr), (1)

where E=Vg/(Ed) is the electric field below the top metallic gate in the
absence of the hole and E is the dielectric constant for pure GaAs. Here we
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Fig. 1. Quantum dot model for the Cu-O plane of the copper-oxide superconductors.

have considered a cylindrical coordinate system with the z axis perpen-
dicular to the plane and passing through the center of the hole with
r=`x2+y2 the distance from the axis. The electrons are thus trapped a in
quantum well and as they move away from r=0 they feel a parabolic
repulsion which for small r is given by

dV(rF, a)=dV(0, a)+
1
2
mgw20(a) r

2 (2)

w0(a)==
|e| Ea
pmg

a
(d2+a2)

(3)

dV(0, a)=
−|e| Ea
p
11−d

a
tan−1 1a

d
22 , (4)

where mg is the electron effective mass. We consider a metallic gate with
the array of holes shown in Fig. 1 which produce a modification of the
external field at the interface which is the superposition of the change
caused by each hole:

V(rF)=C
RF , sF

(dV(rF−RF , a1)+dV(rF−RF+sF, a2)) (5)
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Fig. 2. The potential landscape for a cluster of quantum dots with the
central dot somewhat larger than the other four surrounding dots. Below
the potential minima the orbitals of the outer electrons, i.e., the dx2−y2 of
the central dot and the px and py of the surrounding smaller dots are
shown. Inside the shaded areas the magnitude of the wavefunction is larger
than half its peak value.

where RF=(nxx̂+nyŷ) b spans the entire square lattice of lattice spacing b
formed by the centers of the larger holes of radius a1. The smaller holes of
radius a2 are at positions RF+sF where sF takes the values b/2x̂ and b/2ŷ.
This potential can be considered as an external field felt by the 2DEG and
to which the electrons will respond. If the negative gate potential is not
strong enough to cause total depletion of the heterojunction from the
2DEG, the electronic charge of the heterojunction will move to benefit
from the less repulsive potential near the holes. The self-consistent poten-
tial landscape on the heterojunction will depend on the 2D electron density
and is expected to look schematically as the one shown in Fig. 2 for a
cluster of one hole surrounded by 4 smaller ones.
We will assume that the electrons in the dots feel a harmonic oscillator

potential. Clear experimental indication8 that electrostatically confined
quantum dots feel parabolic confinement comes from the magic numbers
observed. Let us denote by |nx, nyP the eigenstates of the 2D harmonic
oscillator in Cartesian coordinates. In the case where we have square lattice
symmetry the circular symmetry of the ‘‘atomic’’ potential is reduced and
we need to consider irreducible representations of the group C4v. In our
illustrative example of the array the dots have at most 12 electrons per dot.
In these cases we will need only the following orbitals:
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(i) The state with lowest energy is the state with s-wave symmetry
given by

OrF | sP=OrF | nx=0, ny=0P==
l

p
e−lr2/2, (6)

where l=mgw/(.

(ii) The next excited states are the two degenerate p states. The px
state given by

OrF | pxP=OrF | 1, 0P==2
p
lxe−lr2/2. (7)

The state |pyP=|0, 1P obtained by replacing x with y.

(iii) The d wave states are also separated according to the represen-
tations of the C4v.

(a) The state |dx2+y2P=
1
`2
(|2, 0P+|0, 2P) belongs to the represen-

tation D1 and it is given by

OrF | dx2+y2P==
l

p
(1−lr2) e−lr2/2. (8)

(b) The state |dx2−y2P=
1
`2
(|2, 0P−|0, 2P) belongs to the D2 repre-

sentation and it is given as

OrF | dx2−y2P=
l3/2

`p
(y2−x2) e−lr2/2. (9)

(c) The state |dxyP=|1, 1P belongs to the D2Œ representation and it
is given by

OrF | dxyP=2l=
l

p
xye−lr2/2. (10)

Now we wish to consider the square lattice arrangement of quantum
dots presented in Fig. 1 with quantum dots of two different radii a1 and a2
with a1 > a2. In the smaller dot the potential starts from a higher value at
its center. The spacing between the energy spectra depends on the frequen-
cies w0(a1) and w0(a2). By controlling the relative depth of the potential in
the dots (by changing Vg and a1 and a2) and the density of the 2DEG
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(using the back-gate voltage), we can create the following situation. The
larger dot is filled with 12 electrons in the s2p4d6 pseudo-atomic configura-
tion and the smaller dot with 6 electrons in the s2p4 pseudo-atomic config-
uration. Thus the highest occupied levels are the d for the large dots and
the p for the small dots. Next, we show how this can be achieved.
We need to estimate the required quantum-dot sizes and 2D electron

densities necessary for producing the case discussed in the previous para-
graph. We need to satisfy the following condition:

dV(0, a1)+m(N1, a1)=dV(0, a2)+m(N2, a2) (11)

where m(N, a)=E(N, a)−E(N−1, a) is the chemical potential for each of
the quantum dots in the presence of only the quadratic term of the inter-
action in Eq. (2). Here E(N, a) is the total dot energy as a function of
the electron number and we need to distinguish E(N, a1) from E(N, a2)
because of the two different dot sizes.

3. A MODEL FOR A SINGLE QUANTUM DOT

There are several calculations for a single quantum dot using various
approximations.9–12 These calculations have been carried out using a fixed
value of the external parameter w0 of the harmonic confining potential.
Our problem here is more complex because for a given value of a1 we need
to determine a2 required to satisfy Eq. (11) and this requires the knowledge
of the full function E(N, a). Next, we present a simple model to express the
energy of one dot in a harmonic potential of external frequency w0(a). We
represent the N-dot wave-function as a Slater-determinant of Hermite
polynomials which correspond to a 2D harmonic oscillator potential of
‘‘dressed’’ frequency w. The value of w will be determined by minimizing
the expectation value of the Hamiltonian which includes the Coulomb
interaction. The presence of the Coulomb interaction will decrease the
value of w compared to w0. We find that

E(N, a)=
1
2
( 1w+w

2
0

w
2 n(N)+u`(w N(N−1)

2
. (12)

The values of the function n(N) for N ranging from 0 through 12 are
0, 1, 2, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28 respectively. The last term corre-
sponds to the electron-electron interaction which scales as N(N−1)/2 with
respect to N. In addition, it is inversely proportional to the dot size which
implies that it is proportional to `w . The parameter u gives a measure of
the Coulomb interaction in the dot when all the important dependences are
scaled out and we expect it to be almost independent of w and N. In the
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Fig. 3. Top: The results of our model calculation for quantum dots (solid
symbols) are compared with results of DFT calculation (open symbols) for
the cases of (w0=4meV (triangles), 10meV (squares) and 20meV (circles).
Bottom: The chemical potential of the two different size dots match for electron
numbers 6 (+ signs) and 12 (solid circles).

capacitance model for large dots, u is a constant. Assuming a universal
value for u for any dot in a parabolic potential, for a given value of w0 and
N the energy is minimized with respect to w. In the top part of Fig. 3, the
results of our calculation of m(N) are compared with those of a recent
density function theory (DFT) calculation12 using u=2meV−1/2 and the
optimal value of w. The agreement is very satisfactory given the fact that
the same value of u is used for the results obtained for three very different
values of w0=4, 10, 20 meV.

4. DETERMINATION OF THE PARAMETERS OF THE
QUANTUM-DOT ARRAY

We take E=12.9 and mg/m=0.067 for GaAs and we choose N1=6,
N2=12, d=500Å, a1=1000 and Vg=1 V and we find that, (w1=
1.915 meV and in order to satisfy Eq. (11) we need to take a2=620 Å, and
(w2=1.843 meV. The left and the right hand side of Eq. (11) are shown in
the bottom of Fig. 3. We note that the horizontal solid line denotes that the
two functions share the same value for N1=6 and N2=12. Notice that the
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chemical potential differences dm(N)=m(N)−m(N) are: 1.69, 1.64, 4.46
meV for the larger dot and N=11, 12, 13 and 1.93, 1.81, 4.13 meV for the
smaller dot and N=5, 6, 7.
We can tune the doping (controlled by the back-gate potential) to fill

the two dots with N1=12 and N2=6 electrons. This can be achieved by
controlling the total 2D electron density to be 24/b2 and taking b=3400Å
(b should be larger than 2(a1+a2) 4 3240Å for our example here), this
corresponds to a 2D density of n=2.0 · 1010/cm2. If we reduce the value of
the electron density further we can change the filling of the p-level of the
small dots and of the d-level of the larger hole. By changing Vg, and a1, a2
and d we can increase the w0’s which will increase the required 2D electron
density.
In order to describe the electron hopping from a p-level of the small

dot to the dx2−y2 level of the neighboring larger dot we will introduce
the hopping matrix element Vpd=Opx |i H |dx2−y2Pi+x̂=Opy |i H |dx2−y2Pi+ŷ.
Notice that the hopping matrix elements between p and dxy of neighboring
dots is zero, while that between p and d1−r2 is smaller and can be neglected
for appropriately chosen inter-dot distances. These outer electron orbitals
with significant overlap integral are shown in Fig. 2. Notice the direct
correspondence of the orbitals here and the Cu dx2−y2 and the oxygen px
and py in the Cu-O plane of the copper-oxide materials. Furthermore, the
orbital d3z2−r2 of Cu in the Cu-O plane, whose role was much debated, cor-
responds to the orbital d1−r2.
The tight binding Hamiltonian describing this quantum dot array is

H= C
i, l ¥ (i), s

(Edd
†
isdis+Ep p

†
lspls+Vpdd

†
ispls+H.c.) (13)

and can be analytically diagonalized in a straightforward manner. Here
; l ¥ (i) denotes the sum over the neighbors of site i. d

†
is and p

†
ls create elec-

trons in the states |dx2−y2Pi and |pxPl (or |pyPl) respectively with spin s.
Large overlap can be achieved when the inter-cell distance b is comparable
to bo ’ 4(l

−1/2
1 +l−1/22 ). In the case of the example we gave above l1 4 l2

and bo ’ 2000 Å. Taking l1=l2=l, the overlap integral between the p
and the d states which are separated by a distance b decays as e−(b/bo)

2
.

Thus, the magnitude of Vpd can become a large fraction (of the order of
20%) of the within-dot electron kinetic energy (2l/2mg ’ 1meV.
Based on experimental results on charging of a quantum dot using a

capacitor8 and our results here one needs to include in the Hamiltonian a
term of the form

HU=Ud C
i
d†i ‘ di ‘ d

†
i a di a+Up C

i, l ¥ (i)
p†l ‘ pl ‘ p

†
l a pl a . (14)
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Ud, p are of the order dm1(12) or dm2(6) both of which are ’ 2meV. Includ-
ing this term in the above tight-binding Hamiltonian we obtain the same
two-band Hubbard model which has been used to describe a single layer of
copper-oxide. Short as well as long range Coulomb interaction should be
included in the above Hamiltonian in order to understand the phase
diagram of such an array of quantum dots. However, even when one
attempts to describe the physics of the Cu-O planes in the copper-oxide
superconductors one should include these interactions.

5. STRIPE FORMATION ON THE ARRAY AND THEIR IMAGING

The copper-oxide materials exhibit13 stripe formation at filling factor
of 1/8. Numerical studies14–16 of the t-J model, which is a possible reduc-
tion of the above three-orbital model,17 indicate that the model has a phase
separation instability. Some different numerical studies18 of this model
indicate that the system at least with cylindrical boundary conditions seems
to form stripes at the appropriate filling factor and value of J/t. Indepen-
dently of the controversy surrounding the stripe formation in the t-J
model,14, 19 it may be expected that stripes form when the long range part of
the Coulomb interaction is included in the t-J model. At the appropriate
filling factor one might expect formation of stripes in the quantum dot
system described previously. The quantum dot array discussed here cannot
allow a macroscopic electronic charge separation, thus, we expect ( just like
in the real copper-oxide superconductors) to see a striped state or another
form of clustering of charge and spin.
The formation of the stripe state can be investigated using the

quantum dot array proposed in the present paper. We expect that the stripe
state can be detected by electric force microscopy (EFM). Since the inter-
dot distance is of the order of 0.1 mm, atomic scale spatial resolution is not
required. However, we need to be able to detect electric potential variation
on the surface of the quantum dot array of the order of 1mV or smaller.
Therefore a special purpose tip coated with a metal layer should be made
which should be wider than the typical size in order to detect the voltage
change associated with such inhomogeneous charge distribution when
stripe formation occurs.
Transport measurements can be also performed which can possibly

shed light on the original problem. Conductance measurements have
already been performed on one-dimensional arrays of quantum dots.23

There are indications24 that an Anderson–Mott metal-insulator transition
might have been observed.23, 25 At filling factors around one hole per unit
cell, one expects to find an antiferromagnetically ordered insulator. By
applying a magnetic field the structure can be converted to a metal. In
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addition, capacitance measurements can be used to measure the ‘‘addition’’
energy of adding an extra electron to the quantum dot array.
We would like to discuss decoherence or the effect of noise on the

proposed device. In a universal quantum computer not only the devices
representing q-bits are required to be free from noise and decoherence but,
in addition, one needs to be able to manipulate them without destruction of
coherence. The latter issue obviously does not arise in our case of the
dedicated quantum simulator. The proposed device, however, and the
original system are both affected by decoherence effects. The CuO planes
are hardly in a vacuum, phonons being not far in energy from the energy
separation between the electronic states. What is being proposed is a device
for simulating a particular model Hamiltonian, which may have many fea-
tures in common with 2D lattice models. So the question is to what extent
one can neglect noise and get reliable answers concerning mostly thermo-
dynamic information that is discussed in this paper. One expects that there
will be regions of the thermodynamic phase diagram of the proposed device
which will be strongly affected by impurities, imperfections and other
sources of noise and regions which will not be strongly affected. The full
calculation of the effects of such noise on the phase diagram of these
models is left as an open problem; to answer it one needs to carry out a
more complete calculation of the electronic properties of the proposed
device and their sensitivity to the various sources of noise.
In summary, we have shown that the 2D quantum-dot array produced

by the structure shown in Fig. 1 using the calculated hole sizes and
proposed gate voltages and doping values, maps onto the strong coupling
limit of the Hamiltonian given by Eqs. (13) and (14). This Hamiltonian
is that used to describe the physics of the Cu-O plane of the copper-
oxide superconductors. This quantum dot array can be considered as an
‘‘analog’’ quantum computer (as opposed to digital) or a dedicated
quantum simulator of the dynamics of the Cu-O planes in these materials.
In particular we have shown that the striped state formed in the above
materials, which seems to be hard to study experimentally,13, 21 can be
studied and analyzed using an analog system of such a 2D quantum dot
array which is predicted to form a stripe state with a wavelength of meso-
scopic size. This allows conventional imaging methods such as EFM to be
used.
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