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We study scaling of the superfluid density with respect to the film thickness
by simulating the = —y model on films of size Lx Lx H (L >> H ) using the
cluster Monte Carlo. While periodic boundary conditions where used in the
planar (L) directions, Dirichlet boundary conditions where used along the
film thickness. We find that our results can be scaled on a universal curve
by introducing an effective thickness. In the limit of large H our scaling
relations reduce to the conventional scaling forms. Using the same idea we
find scaling in the ezperimental results using the same value of v = 0.6705.
PACS numbers: 64.60.Fr, 67.40.-w, 67.40.Kh

Scaling is a central idea in critical phenomena near a second order phase
transition and in field theory when we are interested in the continuum limit.!
In both cases we are looking at the singular behavior emerging from the over-
whelmingly large number of degrees of freedom, corresponding to the original
cutoff scale, which need to be integrated out leaving behind long-wavelength
degrees of freedom which vary smoothly. Their behavior is controlled by a
dynamically generated length scale, the correlation length £. Such a fun-
damental idea is difficult to test theoretically because it requires a study
of an overwhelmingly large number of interacting degrees of freedom. Ex-
perimentally, however, one hopes to be able to study scaling in finite-size
real systems near a second order phase transition. Namely, the system is
confined in a finite geometry (for example, film geometry) and the finite-size
scaling theory is expected to describe the behavior of the system near the
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bulk critical temperature T\. Liquid *He has been a good real system for
testing finite-size scaling theory and measuring the critical exponents that
are associated with the most singular behavior in thermodynamic quanti-
ties near 7). However, measurements of the superfluid density? of helium
films failed to verify the finite-size scaling theory. A recent reanalysis? of
the specific heat data reported in Refs. 3 and also new measurements of
the specific heat® show good agreement with finite-size scaling theory for
the specific heat. It has also become clear that the choice of the boundary
conditions*® 7 is a key factor in comparing the more recent measurements of
the universal function® and that obtained theoretically. On the other hand,
while new experiments for the specific heat under confined geometries have
been planned to be conducted under more ideal microgravity conditions,®
the problems related to the measurements of the superfluid density? are still
outstanding. (For a comprehensive review of experiments on *He to test the
finite-size scaling theory cf. Ref. 9.)

In this paper we use the 2 —y model and the cluster Monte Carlo method
to calculate the superfluid density on films of size L x L x H (L >> H)
with periodic boundary conditions in the planar L-directions and Dirichlet
boundary conditions (vanishing order parameter) along the film thickness di-
mension. The same model, geometry, and boundary conditions where used
in Ref. 6 to calculate the specific heat, and a reasonable agreement between
the theoretically calculated and experimentally determined universal func-
* tions was found. In this paper we show that the superfluid density is a far
more sensitive observable than the specific heat with respect to the require-
ment that one needs to use very thick films (H — 00) to verify scaling with
respect to the film thickness H. We have found that in order to achieve
scaling for rather small values of H (as in the case of the specific heat) we
need to modify the scaling expressions by using a concept of an effective
thickness. Our introduction of an effective thickness Hesy = H+'D (where
D is a finite dynamically generated length scale) is no violation of scaling,
since at large Heps the constant D can be neglected. Scaling for all the
values of H used in our calculation is achieved with the expected value of
v =0.6705.° A similar modification to the scaling formula allows scaling of
the experimental results of Rhee et al.? for the superfluid density with the
same value of v. ) )

For the z—y model on alattice, the helicity modulus T,(T)/J as defined
in Refs. 11is calculated as the ensemble average of 1/V (i ;) cos(8:—6;)(€,-
G;)? - B(Xijysin(8i — 6;)€, - €;)?). Here V is the volume of the lattice,
B = J/kgT, €, is the unit vector in the corresponding bond direction, and
€ij is the vector connecting the lattice sites i and J. In the following we
omit the vector index since we will always refer to the z-component of the
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helicity modulus and due to the isotropy YTz = Ty. The connection between
“the helicity modulus and the superfluid density ps is established by the
relation!? p,(T) = (m/h)zT(Tj where m denotes the mass of the helium
atom. ‘

In Ref. 13 we studied the helicity modulus Y for the z — y model in
a film geometry with periodic boundary conditions in the H-direction. In
a certain temperature range around the bulk critical temperature T where
the bulk correlation length £(T) becomes of the order of the film thickness
H the quantity YH/T exhibits effectively two-dimensional behavior and a
Kosterlitz—Thouless phase transition takes place at a temperature T2P(H) <
T,. We found that the critical temperature TCQD(H) approaches T in the
limit H — > as

2D _ Te
1200 =T (14 557 ) 1)
where the critical exponent v is the same as the experimental value v =
0.67051 and the value Ty/J = 2.2017.1* We also demonstrated that YH/T
is a function of the ratio H/&(T); e the dimensionless quantity

YLHA _ i), (2)

T
is a function of 2 = tH/" only. We found that when we plotted the calcu-
lated Y(T.H)H/T as a function of z, in the limit L — o0, our results for all
thicknesses H collapse onto the same universal curve. Thus, simple scaling
holds for periodic boundary conditions.

In this paper we consider periodic boundary conditions in the planar
L-directions and Dirichlet boundary conditions (represented by a staggered
spin configuration in the boundary layer) along the thickness direction. Fig.
1 displays our Monte Carlo data for the helicity modulus in units of the
lattice spacing a and the energy scale J for the film of fixed thickness H = 4.
Dirichlet boundary conditions strongly suppress the values of the helicity
modulus as compared to the case of periodic boundary conditions along
H. As a consequence, films with Dirichlet boundary conditions have lower
critical temperatures than films with periodic boundary conditions.

\Ve eliminate the finite size effects in the L-direction by studying the
quantity & = T/(TH) in the I — 0o limit. For a fixed thickness H
and at temperatures T below but sufficiently close to the critical tempera-
ture T2P(H), the system behaves effectively two—dimensionally.}>1® It was
demonstrated in Ref. 13 that we can use the Kosterlitz-Thouless—Nelson
renormalization group equations'® to derive an expression for the planar L-
dependence of K. This expression can be used to extrapolate the computed
values A'(T, H, L) obtained on lattices of finite L to the L = oo limit, for
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Fig. 1. The helicity modulus T(T, H,L) as a function of T for various
lattices L? x 4 with Dirichlet boundary conditions (Dbc) in the H~-direction.

a fixed H. This has been clearly demonstrated in Ref. 13 for the case of
periodic boundary conditions. The quality of our extrapolation is the same
as in Ref. 13 and we omit such demonstration here due to lack of space. In
the following we shall drop the dependence of T on L implying that we refer
to the extrapolated L — oo values.

In Fig. 2 we plot Y(T,H)H/T versus tH'/" for the thicknesses H =
12,16,20,24 to check the validity of the scaling form (2) using the experi-
mental value of v = 0.6705.1° We do not obtain a universal scaling curve,
thus scaling according to the expression (2) is not valid for the films with
thicknesses up to H = 24.

Let us, therefore, pursue another line of thought. In Fig. 3 we show the
layered helicity modulus Tp(z)/J,where z counts the layers, computed on a
60 x 60 x 20 lattice at the temperature T/J = 2.1331. The quantity Tr(z)/J
is just the helicity modulus determined for each layer separately. The lay-
ered helicity modulus is symmetric with respect to the middle layer where
it reaches its maximum and decreases when the boundaries are approached.
Although the helicity modulus Y(T, H, L)/J is not the average of the quan-
tity Yp(z)/J over all layers, the curve in Fig. 3 is an approximation to the
profile that the superfluid density develops in thin films. The basis for the
standard scaling argument is the following. For large H and.very close to the
critical point where £(T') is very large, the “penetration” depth A(T') of the
superfluid density inside the film is of the order of the correlation length.
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Fig. 2. Y(T,H)H/T as a function of ¢
0.6705.

H1/¥ for various thicknesses. vV =

Y, (2

T=2.1331: 60x60x20 lattice

Fig. 3. The approximate profile
4 60 x 60 x 20 lattice at T = 2.
T2D(20) = 2.1346.

Tr(z) of the helicity modulus computed on
1331, i.e. close to the critical temperature,
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Thus, in the limit where all other length scales are small compared to H
and ¢, if we plot Y H versus z/H (or z/£) we should find scaling. However,
for small H there is at least one length scale D (which for H ~ D needs
to taken into account) which has the following origin. The length scale D
contains information on how fast T(z) rises from T(z = 0) = 0. Namely the
z-derivative of T(z) is not universal, it depends on how we have imposed
the Dirichlet boundary conditions. There are many ways to make the order
parameter vanish at the boundary. It can be made to be zero when averaged
over a boundary area 4 = I x!. In our case of staggered boundary conditions
I = /2. If we had chosen Dirichlet boundary conditions where the order pa-
rameter is zero over an area with | > /2 we would have found a. slower rise
of T(z) from its zero value at the boundary. If this initial “faster rise” of the
superfluid density is neglected, the rest of T(z) can be fit to A cosh(z/€)+ B
with only one length scale, the correlation length €. Thus the curve Y(z)
can be thought of as made of two contributions, and scaling at small values
of H can be obtained only if the film size is extended. We can imagine that
this thinner film of size H is obtained from a thicker one by a process of
forcing the superfluid density to go to zero faster than its “natural way” by
a “speed” dictated by the severity of the boundary conditions.
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Fig. 4. Y(T,H)H.5;/T as a function of tl];}(}’ for various thicknesses.
Hefp = H+5.79 and v = 0.6705.

The lack of scaling with the expected critical exponent v = 0.6705
indicates that the critical temperatures T?P(H) do not satisfy Eq. (1).
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Because of the argument given earlier about the profile of the superfluid
density we may expect an effective film thickness Hqys to enter the scaling
expressions (1) and (2). The simplest assumption is Hepy = H + D where
D is a constant. Indeed by replacing H with Hesy in these equations for the
film thicknesses H = 12,16,20 we obtain z. = —-3.81(14)and D = 5.79(50)
with v = 0.6705." In Fig. 4 we plot Y(T,H)Hess/T as a function of tH:j{}'
for films with H = 12,16,20,24 where v = 0.6705. The data for the helicity
modulus collapse approximately onto one universal curve.
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Fig. 5. (1 —~T2P(H)/Ty)" for the Villain model in a film geometry with open
boundary conditions as a function of H. The solid line is the expression
1.627/(H + 1.05), v = 0.6705. The dashed line represents the expression
1.25/H (fit to the last two data points).

We wish to test further the assumption that the boundaries introduce
an effective thickness into the scaling expression (2). Janke and Nather!?
studied the thickness dependence of the Kosterlitz-Thouless transition tem-
perature of the Villain model with open boundary conditions (interactions
of the top and bottom layer only with the interior film layers). They found,
however, that in order for scaling to occur they needed to use a value for v
higher than the value believed for the model. We replace H in Eq. (1) by
the effective thickness Heps = H + Dv. Indeed, taking the expected value
v = 0.6705 we find Dy = 1.05(2) and z. = ~1.62(2) and a good quality
of fit (cf. Fig. 5). In Fig. 5 we also included the result of the fit of the
Kosterlitz-Thouless transition temperatures T2D(H) to the expression (1)
where we fixed the value of the critical exponent ¥ at the expected value
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0.6705 (dashed line). Only when the transition temperatures corresponding
to the thicknesses H = 10 and H = 16 were used for the fit we obtained a
good quality of the fit.

We can understand the increment D as an effective scaling correction
which renders the scaling relations (1) and (2) valid even for very thin films.
This scaling correction is of zeroth order in the reduced temperature and can
thus be assumed to be a constant. Furthermore, since the increment D is
due to excessive vortex creation by the boundaries and scaling is only valid in
a narrow temperature region about T, we may assume the vortex creation
rate, and thus the increment D, to be only weakly temperature dependent.
For large thicknesses H the increment D can be neglected and we recover
the conventional scaling forms. This result means that the film thicknesses
considered in Ref. 17 were still too small to extract the expected value of
the critical exponent v from the H-dependence of the critical temperature
(1) without the help of an effective thickness H + Dy.
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Fig. 6. Scaling of the superfluid density data of Rhee et al.2 with the effective
thickness desy = d + 0.145. v = 0.6705 and all lengths are in nm.

In the experimental situation it is possible to imagine a similar situation
where a length scale D emerges and corresponds to an average distance on
the substrate over which vortices are created. (In the experiments by Rhee et
al.? the supporting pillars could be a source for additional vortex creation.)
In Fig. 6 we achieve approximate collapse of the data for the superfluid
density p, for films of various thickness d (d is in um) given in Refs. 2 by
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plotting ps(t,d)dcss/p versus tdlﬁl} with » = 0.6705 and defy = d + 0.145.
We obtaired the effective thickness by examining the reduced temperatures
t7s(H ) where finite-size effects set in. According to finite-size scaling theory

tys has to fulfill the relation t5; x d=1/¥, thus in our case 15, d;flf/”. The
data points corresponding to the film with d = 3.9um deviate from the
universal curve; we attribute this to the anomalous behavior of these data.
Namely, in general |t;,(d1)| > lt5s(d2)| if di < d2, but this is not the case for
d, = 2.8um and dy = 3.9um (cf. Refs. 2). The scaling of the experimental
data with the aid of this finite length scale indicate that the average distance
between defects will introduce a new length scale from which has to be much
smaller than the film thickness and the correlation length to see simple finite
size scaling. Theoretically there are two different limits in which simple
scaling with H should be expected to be valid. The clean boundary. limit,
£ ~ H < D, and the dirty boundary limit where D € £~ H.

In conclusion, we find that the results of our simulations for the super-
fluid density on rather small thickness films obey a scaling relation where an
effective thickness is introduced. Conventional scaling relations is expected
to be valid on films of much larger thickness. Applying the same idea of
the effective thickness on the experimental data, we found that we were able
to scale the data of Rhee et al.2 in a simple way without resorting to any
departure from scaling nor to using unrealistic values for v. Clearly, more
experiments with different substrates are desirable.

We wish to thank F. M. Gasparini for providing us with his data of
the superfluid density for films of various thickness and for clarifying dis-
cussions. This work was supported by the National Aeronautics and Space
Administration under grant no. NAG3-1841.
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