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ABSTRACT

We review variational calculations of the momentum distribution and condensate
fraction of atoms in liquid He at zero and low temperatures. We use ground state
and excited state wave functions which include Jastrow, three-body and backflow cor-
relations and are obtained from variational calculations that give accurate energies and
pair distribution functions over a wide density range. We calculate the change of the
ground state momentum distribution due to creation of an elementary excitation and
use it to calculate the change of the momentum distribution and condensate fraction
at low temperatures (T < 1°K’). This calculation brings out the collective and single-
particle character of the excitations in the long and short wavelength limit respectively
and the interplay between the two at intermediate momenta. The expectation values
are calculated by means of cluster expansions and making use of the hypernetted-chain
equation and the scaling approximation to include the contribution of the elementary
diagrams. We discuss the singularities of the momentum distribution at low momenta
and low temperatures. We compare our results with momentum distributions obtained
from Green’s function Monte Carlo calculations and neutron scattering data.

1. INTRODUCTION

A great deal of theoretical effort has been invested towards a microscopic under-
standing of the ground state of dense quantum fluids in terms of the bare interaction
between the constituent particles. Liquid helium is unique for it remains liquid even
at absolute zero where the quantum coherence has fundamental consequences and for
the simplicity of the atom-atom interaction. Five decades ago, London[l] proposed
that the underlying mechanism, which drives the superfluid transition in the isotope
liquid *He, is the Bose-Einstein condensation. It was already sixties when, after the
suggestion of Miller, Pines and Nozieres[2] that the condensate could be probed by
heutron scattering experiments, Hohenberg and Platzman([3] proposed a definite deep
inelastic neutron scattering experiment. The neutrons at high momentum transfers
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Figure 1.  The ground state energy for several densities calculated with

Jastrow (crosses), Jastrow plus triplets (open circles) is compared with the
GFMC (open squares) results and ezperiment (sold line).

interaction and they are very close to the experimental curve (solid line). The crosses
represent the results obtained with the Jastrow wave-function (1.1).

The open circles obtained with the J + T wave function are within 4% of the
GFMC energies. The same wave function gives ground state energies for droplets of
liquid *He which are also within ~ 4% of the presumably exact GFMC energies. The
structure function obtained with the J + T wave function is in excellent agreement
with the GFMC results and experiment. We conclude that the Aziz potential and the
approximate wave function (1.2) give good quantitative description of the ground state
of liquid He.

The nontrivial task in the variational calculations is the accurate evaluation of
the expectation values with the wave functions (1.1) and (1.2). In Ref. 7 and 8
the Hypernetted-Chain-Scaling (HNC/S) approximation was introduced where scaling
techniques were employed to include the contribution of the elementary diagrams. The
results obtained with this technique are within < 1% agreement with the Monte Carlo
integration techniques.

Wave functions and energies of elementary excitations in liquid *He have been
studied by many authors. The first variational wave function of an elementary excita-
tion with momentum k was the Bijl-Feynman ansatz

N L
vp= Y e, (1.5)

=1
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Namely

n#z(p) = //'E(Fllf)el’if“'dgﬁy- (2.3)

Using the wave function (1.2) for the ground state ng(p) is obtained as
no(p) = ncNép g + np(p), (2.4a)
mo(0) = [ (molr) = polr = 00)) P75, (2.48)

where n, is the condensate fraction and ng(p) represents the momentum distribution
at finite p. The Kronecker-6, which represents the p = 0 condensate is a result of the
off-diagonal long-range order in the one-body density matrix

Po(T11r — o) = nep. (2.5)

Here p denotes the particle density.

TABLE I

ng(p) at the equilibrium density p = 0.3650 3.

b no(p) P no(p) |
0.015 | 501 . 0.65 0.38
0.035 2.36 0.85 0.29
0.050 181 . 1.05 0.22
0.055 . 1.66  1.25 0.15
0075 | 133 | 145 0.10
0.095 114 | 1.5 0.058
0.115 102 185 | 0.033
0.135 093 | 2.05 0.024
0.155 0.86 ' 2.25 0.020
0175 081 ' 245 0.015
0.195 076 . 2.65 0.009
0.215 . 0.73 2.85 0.006
0.235 0.70 3.05 0.003
0.250 © 0.69 j 3.25 0.002
0.450 050 | 3.35 0.001

The one-particle density matrix has been calculated in Ref. 14 using the J + T
wave function. Both n. and po(r11r) are functions of the usual and auxiliary distri-
bution and nodal functions as well as elementary diagrams which are summed using
the HNC/S technique. The accuracy of this approximation in calculating pg(rq/) was
demonstrated(14] in the simpler case of Jastrow wave functions where excellent agree-
ment was found with existing results of MC integration. Here, skipping the technical
details of the calculation, we review some of the main results with the realistic J + T
wave function.

It may be verified that the asymptotic behavior (1.3) reflects the following singu-
larity in ng(p)

me 1
no(p—>0):ncﬁ ; . (26)
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which is half of the total phonon energy obtained with hoth the Bijl-Feynman and
Feynman-Cohen wave functions in the & — 0 limit. Thus. a phonon in Bose liquids is,
indeed, a pure harmonic vibration with half of its energy from kinetic and the other

half from potential terms.
In the short-wavelength limit (£ — o)

to(k — ) =ti(k — ) =1 (3.5a)
t(k —0)=t(k—no0)=0. (3.5b)

i.e, a single particle if removed from the ground state distribution and is put in the
distribution ng(|p — k|) centered at P = k. In this limit the energy of the Feynman
excitation is £2k%/2m and equals the change in the kinetic energy.

In Fig. 2a, we give fg(k), t+ (k) and t—{k) as calculated for finite & using Eq. (1.6)
and (1.2) for d’}: and g respectively and in the HNC/S approximation.
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Figure 2. (a) The functions to(k), t4(k) and t_(k). (b) The contributions
tn(k) and t' (k) of the t' term to the particle and momentum conservations.
k is the momentum of the excitation.

If we neglect the term ¢ for a moment, the creation of a single elementary excitation
of momentum & removes to(k) particles from the ground state momentum distribution;
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In this temperature range (:1” < 17K) only long-wavelength phonons can be excited,
i e excitations with & < 0.247 ! In Ref. 12 and 13, we found that the wave function
(1.6) is accurate for such excitations i.e with energies e(k < 0.2471) <« 4°K. In this
{emperature range, we may neglect the édnj term because the integral of ¢ is small for
k < 0.2A7 1. In this range of k and T, we can further approximate e(k — 0) = hek
and to(k), to(k) and t_(k) by the expressions (3.3). Therefore, we obtain

1(T,p) =~ Tog(p) = — () nolp) (43a)
on yP) = ———=—T"n = —{=] n s da
1 P l2ﬁ3pc otp TO olp
('{3/¢ 1 mc -
Sno( T, p) = e (= k), (4.3
n(Tp) /(2#)3pexp(l3€(k))—l/'LcnO(p ) ( )
T .2
o) = (1= () Jmotp) + Sma( T, (4.3¢)
40

where Ty ~ 7.6K. Thus, the temperature dependence of the condensate fraction at
low T is given by
T .2
771}(T):77r(0)<14 (FO) > (4.4)

The last equation has aiso been derived by a phenomenological approach|[16] and from
the structure of perturbation theory at finite T'(17].

The term Nncéy, g in ng(p) gives rise to terms in éng which have singular behavior
in the p — 0 limit. These singular terms are

Sno(T )7nc(0)mc 1 Nnc(())mi_nc(())mcl_i_
TP T TRy exp(Be(k)) =1~ A28 p? 2h p

(4.5)

ng(p) has exactly the same 1/p singularity with opposite sign (see Eq. (2.6)). Thus,
for ghep << 1, the 1/p term in ng(p) is canceled by that in én(T,p). This cancelation
has also been pointed out by GrifﬁnﬁlS]. The present method can provide én(T, p) for
small T but for any p. In Ref. 15 we give tables of the change én(T,p) for several
values of T and p obtained with the full 6n1;(ﬁ). It appears that the expression

N T E ne{0)me 1
T, p) ~ (1 - (TO) >no(p)+ by exp(Ahel] 1 (4.6)

is a good approximation for low 7" and it may be used in neutron scattering experiments
to find the contribution from the singular terms. The én(T,p # 0) is positive in
this temperature range; thus, it appears that the atoms are removed from the p = 0
condensate and placed in states with hcp < =T

5. RESULTS AND COMPARISONS

In Fig. 3 we compare the results of our calculations of the momentum distribution
at the equilibrium density with the GFMC[19] and the neutron scattering data[20].
The solid line is our ng(p # 0) obtained with the wave function (1.2) which includes
optimized Jastrow and three-body correlations. In these results the n(p) is normalized
such that

/n(p)d3p: 1. (5.1)

The dashed-dotted curve is the result of the GFMC calculation obtained from a
simulation of 64 particles in a periodic box. The differences at low p and the small
differences at intermediate and higher p between the variational ng(p) and that obtained
by the GFMC calculation may be attributed either a) to the approximate nature of the
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Figure . The condensate fraction as a function of density as obtamed from
the variational calculation (solid line) compared with GEMC and experi-
mental results. The lines are guides to the eye.

At T < 1°K, the condensate fraction depends weakly on temperature. Using

Eq.(4.4) and taking nc(0) = 0.092 we find n (T = 1°K) = 0.090, which is a negligible
difference.
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