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ABSTRACT

We review numerical and analytical results obtained on the strong-coupling Hub-
bard Hamiltonian and the related spin-1/2 antiferromagnetic (AF) Heisenberg and
quantum nonlinear o models (QNLoM) on a square lattice. Our studies of the AF
Heisenberg model and the equivalent QNLoM suggest that the ground state of the
former is characterized by AF long-range order with sublattice magnetization and
excitation spectrum consistent with spin-wave theory and experiments. At low tem-
peratures the correlation length calculated from the AF Heisenberg model behaves as
{T) = a€e®/T; the same behavior is also found in the ordered phase of the QNLoM. Us-
ing a value J = 1270K for the AF coupling, this form fits the temperature-dependent
correlation length obtained from neutron scattering experiments done on LaaCuOy4.
Furthermore, we study the role of mobile holes introduced by doping the strong-
coupling Hubbard Hamiltonian. We discuss the excitation spectrum of a single hole
obtained by exact diagonalizations and by variational calculations. We find a param-
eter range where hole-pairing is energetically favorable in the model.

1. Introduction

The suggestion that the superconductivity mechanism in the copper-oxide ma-
terials may be understood by studying the two-dimensional Hubbard-model in its
strong Coulomb repulsion limit{1] has recently received significant attention. Low-
order strong-coupling perturbation treatment of the Hubbard model produces an
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effective Hamiltonian[2] which operates in a restricted Hilbert space having states
with no double-occupancy below half-filling

Heff=H1+H2+H3, (1_1)
Hi=—t 3 (d cjo+he), (1.2)
<i3>,0
2
Hy = — 2-[—]— Z (C;,aci,a"i,—ocz‘,acj,a + c;,—aciv—ﬂcz,ocj,0'>’ (1.3)
<i,1>,0
2
Hy = - U Z (CL,acj»ﬂnj,—O’C;,aciyv
<i,j,k>,0
el cigel e +(i——*kk-—>i)) (1.4)
k,—c"0 =050 0 ) ’ .

where n;, = cr-ac,'a, t is the hopping matrix element and U the on-site Cloulomb
repulsion. The first term (H;) produces the constrained hole-hopping which avoids
double occupancy. The second term (H3) is obtained from the Hubbard model by
integrating out virtual processes in which the electron hops, momentarily, to a neigh-
boring site occupied by an electron of opposite spin and in the final state the two
electrons go either in the original configuration or in the one with spins exchanged.
Exact diagonalizations of small size systems(3] show that the three-site term (H3)
gives negligible contributions to the single-hole and two-hole energies. Ignoring the
three-site interaction term and substituting U by 4t2/J in the Hj term, this effective
Hamiltonian is now known as the ¢ — J model. The ¢ — J Hamiltonian is an inter-
esting model on its own and its derivation from the Hubbard model may serve as a
motivation[4].

At half-filling the Hy and Hj terms of the Hamiltonian (1.1) are inactive and H,
(apart from a constant) reduces to the spin-1/2 antiferromagnetic (AF) Heisenberg
mode] on the square-lattice

1
H=J Y (s:s;- +5(85Fs7 + s;s;)). (1.5)
<%,7>

where 57 = %(cITc,-T -~ c:{lcil), Si+ = CITcil and 57 = c!lc,-T. In the derivation from
the single-band Hubbard model, J = 4t2/U. However, the Hamiltonian (1.5) can
be obtained form multi-band models also; hence the magnitude of the characteris-
tic energy scale J of the model may be determined from the magnetic properties of
the undoped materials. In two space dimensions (2D) the Heisenberg model cannot
develop long-range-order (LRO) at any non-zero temperature[5]. Furthermore, there
are no exact statements yet[6] about the existence of LRO in the ground state of the
s = 1/2 antiferromagnet on the square lattice. Spin-wave theory (SWT), assumes the
existence of AF LRO in the ground state and treats the zero-point motion of small
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quantum fluctuations about the classical Neel state perturbatively|7). This picture
is supported by several systematic approaches including analytical[7,8], semianalyti-
cal[9] and purely numerical techniques{10,11,12].

In the first part of this paper, we obtain a variational ground-state wave-function
consistent with sum-rules for the dynamic structure function which gives accurate
ground state properties. Using this wave-function and sum-rules we determine the
spin-wave velocity[8,13]. The spin-wave velocity, the sublattice magnetization and
the AF coupling J are accessible to experiments(14,15) and this allows direct test of
the theory.

To make contact with the phenomenological properties of the copper-oxides, we
need calculations on these models at non-zero temperature also. For instance, neu-
tron scattering experiments performed on the undoped LapCuQy [14] 1eveal strong
two-dimensional spin correlations. The idea that the Hamiltonian (1.1) may be rel-
evant for the physics behind these materials is supported by the comparison of the
correlation length ¢(T) obtained from a quantum Monte Carlo (QMC) study of the
Hamiltonian (1.5) at finite temperature(16] with that inferred by neutron scatter-
ing experiments. At low temperatures, where £(T) is much larger than the lattice
spacing, the model (1.5) in two-space dimensions has the same long-wavelength limit
with the quantum nonlinear ¢ model (QNLoM) [17). Chakravarty, Halperin, and
Nelson (CHN) studied the QNLoM by Renormalization Group with the S-function
calculated with weak-coupling perturbation theory up to one(18] and two[19] loops.
Their one-loop calculation suggests the form £(7') = a/Teb/T at low temperatures[18]
and varying the parameters a and b CHN fit the neutron scattering data. This form,
however, does not fit the ¢{(T') obtained from the QMC calculation of the Heisen-
berg model[16]. Later, the two-loop calculation{19) of CHN gives a different prefactor
namely, §(T) = ae?/T. To find the correct behavior of £(T) and to make contact be-
tween the two models, we simulated the QNLoM on large lattices[20]. We found that
in the ordered phase of the QNLoM, £(T') can be approximated by the second form
which also agrees with ¢(T') obtained from the QMC study of the Heisenberg model.
Furthermore, our £(T) agrees reasonably well with the neutron scattering data using
J = 1270K. We conclude that SWT correctly describes the T = 0 properties of the
Heisenberg model and the 2D thermal spin correlations in the model are consistent
with those observed by neutron scattering. Therefore the Hamiltonian (1.5) may be a
part of the microscopic Hamiltonian necessary to understand the magnetic properties
of the materials.

Due to the fact that the simulation of the model (1.1) is hindered by problems
arising from the fermion statistics, the information about the phase diagram and
superconductivity in the model is limited. Numerical studies of the model[26] sug-
gest that a small amount of holes destroys the AF LRO. Recently this model has
been studied by means of analytical and semianalytical approaches{21,22,23] as well
as exact numerical diagonalization techniques|3,24,25). These studies indicate that
the creation of a hole inside the square-lattice spin-1/2 Heisenberg antiferromagnet
leads io a well-defined quasiparticle excitation separated by a gap from an incoherent
spectrum of spin-excitations. In this paper, we also report certain results for the
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single-hole band obtained by VMC methods[27]. Exact diagonalization studies[3] on
small-size system indicate that there is a range of /U where hole-pairing is possible.
These results have been reproduced later[25] and extended on a somewhat larger-size
lattice.

In the next section we review results for the ground state and elementary ex-
citations of the Hamiltonian (1.5) obtained by paired-magnon analysis and VMC
calculations. In section 3 we discuss the properties of this model at low temperatures
and its connection to the QNLoM. In the last section we discuss results on the full
Hamiltonian (1.1) at very light doping obtained by VMC and exact diagonalization
techniques.

2. Ground State and Elementary Excitations at Half-Filling

In the early fifties Anderson followed by Kubo, extended the spin-wave theory
(SWT) introduced by Holstein and Primakoff for ferromagnets, to study the ground
state of antiferromagnets with large spin s({7]. This technique, assumes the existence
of AF LRO in the ground state and treats the zero-point motion of small quantum
fluctuations about the classical Néel state perturbatively. Initially this approach was
thought to be an expansion in powers of 1/s. Since the role of quantum fluctu-
ations becomes more important for small s, it is natural to raise doubts about the
convergence of this approach for the smallest possible spin case — the s = 1/2 antifer-
romagnet which is the case of our interest. Looking at the problem from a somewhat
different angle it has been realized that the result of SWT is the leading order in
a perturbation theory expansion in the number of loops which is also an expansion
in powers of 1/z, z being the coordination number. Still, this expansion is valid for
higher dimensional lattices where 2 is large and the fluctuations are suppressed.

Recently there is significant effort to understand the square-lattice quantum
Heisenberg antiferromagnet. Even though there are attempts to show the existence
or non-existence of AF LRO in its ground state[6], the situation is not rigorously
clear yet. Huse, by making a more accurate extrapolation to the J+/J% = 1 limit of
the results of cumulant expansions[9] in powers of JL/J?, finds m! ~ 0.313 for the
staggered magnetization and a%l— = —0.334 £ 0.001 for the ground state energy per
bond. These results compare very well with those obtained from SWT[7} which are
respectively, 0.303 and —0.332. Monte Carlo (MC) calculations aiso suggest that the
picture obtained from SWT is correct. From the scaling behavior of the staggered
magnetization, Reger and Young (RY) [11], using the Path Integral Monte Carlo
(PIMC) technique on up to 12 x 12 size-systems, concluded that mt ~ 0.30 + 0.01
in good agreement with SWT. Using the Green’s function Monte Carlo (GFMC)
method, Carlson and independently Trivedi and Ceperley have performed accurate
simulations[12] on up to 32 x 32 lattice size. They find that the ground-state energy
per bond and staggered magnetization follows the finite-size scaling expected from
SWT. Their extrapolated values to the infinite lattice are d—%ﬂj = —0.3349 4 0.0001
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and m! ~ 0.31 + 0.01. Furthermore, they studied spin-wave states and concluded
that the energy-gap scales as predicted by SWT and vanishes in the infinite-lattice
limit.

In this section we shall review certain results obtained with the variational ap-
proach. In Rel.8, we used a complete set of multi-magnon states and calculated the
matrix elements of the Hamiltonian (1.5) in a separability approximation originally
developed for the treatment of strongly correlated quantum liquids [28]. The multi-
magnon states may be defined as

LﬂwLJEI]w@M“w>, (2.1.a)
E
| o
a% = 7% Z elk'Ra%, (2.15)
R

where the sum is over all N lattice vectors K and n(k) = 0,1,2,..., N. The state |¢ >
is defined as follows: )
6>z —= S (-1)F))e > . (2.2)
AT

Here the sum is over all possible spin configurations ¢ and L(c) is the number of down
spins in one sublattice contained in the configuration c. The state |¢ > can be written
as |[¢ >= HﬁgA |R, + > HﬁsB {R,~ > and the states |K,+ > and |R,— > are the
eigenstate of S%. A and B represent the two sublattices. It can be easily verified that
the state (2.2) has zero staggered magnetization in the z and y directions but has
full staggered magnetization in the z direction. In fact, if we rotate the Neéel state
around the y-axis by /2 we obtain the state (2.2).

These states form a complete but non-orthogonal set. Let us first consider the
subspace of m magnons occupying the state with momentum k and n magnons oc-
cupying the state having momentum —k. We modify the definition as follows

i, = [NV - (lnt +ln)]! (Bt Bo) K (b )
’ - mln!N! p
{Rif5}e
a%l.‘.a;-z-moél...a'é“w >, (2.3)

with k # 0. Here, {ﬁi,Fj}C means that the sum is over all {ﬁl, veey By P14 o0y T} with
the constraint that no-two sites in the set are the same. These states are orthogonal;
however, they do not form a complete set. The entire Hilbert space is spanned by

[N - {(mg+m ) TR 5 iR -
. _ k —k tk(Ry+.. 4+ R ) lk,(r1+..-+rm_-)
Mgy m_pe >= I l mg.m_E!N! _; € ke k

kk.>0
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where mg and m _f are the number of magnons in the momentum states k and —k
respectlvely We can proceed further by introducing a separability approximation(28]
in the calculation of the matrix elements of the unit operator and the Hamiltonian.

Namely
o ] .
< em, m»;...|...m;,m_;... > H < mp, m_;|m;,m_l€ >
k,k.>0
H 6171’. mE‘Sm’ .m_z (2'5)
3 o L
k,ky,>0
and
<. mk,m oo H — Egl.. MM _pe > Z <771'—,771,'_q~iH~E¢‘mq~,mv_q->
4.9:>0
< ]I <mpym pmpm_p > . (2.6)
k#q k>0

where Ey =< ¢|H|¢ >. Since we have orthogonalized the states (2.3) for all k, the
states (2.4) are orthogonal within the separability approximation. This approximation
makes sense only in a limited function space characterized by 1/N > - Fmp << 1.
The eigenvalue problem can be solved exactly with the matrix elements of H
calculated in the separability a.pproximation The ground-state energy is given by

Ey = ——]%4 + dZIE,k,> ( 144/1 -~ ) Evaluation of this expression for a large
enough square lattice gives 7% = —0.3290. This value is within ~ 2% agreement

with the best estimates[12] of —~0.3349 + 0.0001. While the y and z component of the
ground state sublattice magnetization vanishes, its ¢ component is the same as in the
SWT (for the square lattice we obtain 0.303 which is ~ 61% of its classical value).
In the separability approximation the excitation spectrum is also the same as that
obtained with linear SWT.

After some algebra[8], the ground-state wave-function in the separability approx-
imation is obtained as

lhg >= Aexp(—% Z u,'jal-zcr_‘;> l¢ >, (2.7.0)
<7
where
1 14 4(k) ik (R~ R,;)
u,]:—NZ( ———l_v(k)_l)e ) (2.7.6)
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Figure 1. QOur results for the exponent u(x,y) of the correlation factors
in the ground state wave-function (Eq. 2.7) (open circles) for y = 0. The
solid line represents the results of the Variational Monte Carlo calculation

of Huse and Elser.

where y(k) = 1/2(cosky + cosky). Variational wave-functions of similar form have
been studied by Hulthen(29], Kastelijn[30], Marshall{31] and Bartkowski[32]. More
recently the form (2.7.2) was studied by Huse and Elser [33] using the VMC approach.
They took u(1) = uy and u(r) = a/r® for v > 1, where r = |R; — RJ| and treated
uy, @ and b as variational parameters. The energy obtained in this approach[33] is
~ —0.332J for uy ~ 0.65 a ~ 0.475 and b ~ 0.7. Similar VMC studies were carried
out by Horsch and Linden[34] where using only u(1) as a variational parameter (and
u(r > 1) = 0) they found —0.322J for the ground state energy in our units. Notice
that our « is not a function of the distance r between two points on the lattice but
rather a function of the two components  and y of the vector I:Z',‘]u In Fig. 1 we
plot our u(z,y = 0) (open circles) and compare it with the results of Ref. 33. The
form (2.7) has long-distance behavior consistent with the existence of long-wavelength
spin-wave excitations. From Eq. (2.7.b) we find that

u(r — o0) = ﬁ (2.8)

r
This form is shown by the dashed-line in Fig.l and we note that the onset of the
asymptotic form starts from essentially » = 2. In liquid He the existence of long-
wavelength excitations (zero sound) influences the long-range behavior of the Jastrow
correlation factor[35]. The long-range behavior of the wave-function does not give
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significant contribution to the ground-state energy. However, it has important con-
sequences to the spectrum of elementary excitations when the same wave-function is
used to define the Feynman-Cohen states or to construct a correlated basis(36]. We
notice that the tails of the wave-function of Ref. 33 and that of Eq.(2.8) are quite
different.

We have calculated the expectation value of the Heisenberg Hamiltonian with
the wave-function (2.7.a-c) using MC integration. We have restricted the sum in
(2.2) (which defines |¢ > to be used in Eq. 2.7) to configurations with zero total
z-component of S,. We found almost the same energy (slightly better(lower)) with
that of {33]. The advantage of the wave-function (2.7) is its simple physical origin
and the fact that one obtains the same ground-state energy with no-free parameters.
Next we improve the wave-function (2.7) further using sum-rules.

We can express the eigenstates of (1.5) as |¥ >= 3, w(c)(—l)[‘(c)lc >. The
configuration |c > can be labeled by the location of the down spins on the lattice
i.e., ¢ >= |i1,i2,...ir > and the function ¥(i1,12,...,ir) gives the amplitude of that
configuration. The phase (—1)L(C) has been defined earlier and is separated from
the amplitude % in order to obtain a non-negative v for any ground state configu-
ration[31]. In this representation it is straightforward to show that the eigenvalue
problem for the Hamiltonian (1.5) reduces to a difference equation for the amplitude
¥(41,12, ..., ir) which is identical to the many-particle Schrédinger equation on a 2D
lattice. In this quantum Boson lattice-gas the “particles” (the particles correspond
to the down spins) have a “mass” m = 2 in units A = J = 1 and interact via a pair
potential V;; having an infinite on-site repulsion, V;; = 1ifj is a n.n pair and Vi; =0
otherwise. This is a useful representation because some of our knowledge about the
system of Bose-particles can be translated to the magnetic system also. For example,
Reatto and Chester have shown[35] that the zero-point motion of the long-wavelength
modes of the Bose-system (zero-sound) gives rise to a long-range tail in the Jastrow
wave-function. For a 2D system, we obtain

mc

u{r — o) =

Tpgrr’ (2.9)
where for the case of the quantum spin-1/2 system c is the spin-wave velocity, m = 2
and pg = 1/2. The ground state of the spin-1/2 Heisenberg antiferromagnet has zero
total S,; therefore pg = 1/2, because the number of down spins is exactly half the
total number of sites. Comparing the tails (2.8) and (2.9) we find the value for ¢ = V2
found by linear SWT. Next, we discuss how to improve the wave-function (2.7) and
calculate the spin-wave velocity using sum-rules.

We used three w-moments (sum rules) of the dynamical structure function S(g,w)
to determine the spin-wave velocity, assuming that a single-magnon state exhausts
them in the long-wavelength limit. Using the w9 moment (the static structure func-
tion §(¢) = (0|02 04|0) ) and w!-moment we obtain

c= (2.10)
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Figure 1. (a). The energy per site as a function of the square of the square
of the total magnetization M? for 4x 4, 6 x6, and 10 x 10 lattices. The slope
15 related to the spin-wave velocity via Eq. 2.12. (b). Ezact diagonalization

results for ¢ versus M2 obtained on a 4 x 4. The solid line has the same
slope as the curves in fig (a).

where sy is the slope of S(q) and
= =27 > (0I(S]F 7,5 + ST S 5)I0). (2.11)
§

The value of ¢ calculated from Eq. 2.10 is sensitive to both the tail of the wave-
function and finite size effects. As in the case of quantum liquids we use a different
and more accurate way to determine ¢, explained next.

We have obtained[13] a third sum rule analogous to the compressibility sum rule
in the case of quantum fluids which in the spin-system is translated to “magnetic sus-
ceptibility sum-rule” (w~! moment). Again assuming that this sum-rule is exhausted
by a single-magnon-excitation we obtain

c=+/2f€" (2.12)

Here ¢ is the second derivative of the energy per particle e(M) with respect to the
magnetization density M = 1/N < 3", of >. We note that the magnetization density
corresponds to the particle density in the Bose system and the energy ¢(M) to the
ground-state equation of state. We calculate ¢’ by restricting ourselves to a subspace
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with well-defined 57, i.e., total z-component of the magnetization. Therefore we
can determine the spin-wave velocity in a way analogous to that used in the case
of quantum liquids to calculate the sound velocity. This technique is known to be
accurate for numerical studies because it is not too sensitive to finite-size effects and
to the tail of the ground-state wave-function.

In the variational calculation we used the form (2.7.a) including in the sum (2.2),
defining |¢ >, configurations with zero total S, only. We took u(l) and u(v2) as
variational parameters and

u(f) = aupp(F), for y/z2+y?>2 (2.13)

where uy g(7) is that given in Eq. (2.7.b) and a is a parameter of order 1. We did
not treat « as a variational parameter because the ground-state energy is not too
sensitive to its precise value. Instead it is determined self-consistently by satisfying
the sum-rules.
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Figure 3. a) The energy per site as a function of L3 for an L2 lattice. The
results are obtained with the parameter-free wave-function (2.7) (upper line)
and with the improved wave-function (lower line). The energies are very
close; The improved wavefunction is superior because it is consistent with
sum-rules. b) The staggered magnetization versus L=1 with the improved
wave-function.
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Therefore, given a value of a we perform the variational calculation and deter-
mine ¢(M) and the spin-wave velocity c from the slope of e(M) via (2.12). Using the
Reatto and Chester[35] relation (2.9) we obtain a new value for a from the relation
a = c¢/v/2. This can be iterated until the input and the output value of a are the
same. This procedure converges very quickly since as we mentioned the energy e(M)
is not sensitive to the value of a.

In Fig. 2.a we give ¢(M) versus M? for several lattice sizes. Notice that ¢ is,
within error bars, independent of the lattice size and we obtain a = 1.22 4 0.02. The
value of this parameter (commonly called Z;) is in good agreement with the value
1.16 obtained by spin-wave theory[7] and the GFMC value[12] of 1.14 & 0.05 recently
reported. It is also the same with the slope obtained by exact diagonalization studies
of a 4 x 4 lattice as shown in Fig. 2.b. Hence, we believe that the errors due to the
approximate nature of our wave-function are small. Furthermore, we believe that in
the GFMC calculation one may use our Eq. 2.12 to determine ¢ more accurately.
The calculated c using the form (2.10) has much larger errors as expected; it agrees,
however, with the above value within error bars. In Fig. 3.a we present the ground
state energy per site as function of L™3 for lattices of size N = L2. The energy
obtained with the wave-function (2.7.a-b) and with the improved wave-function (2.13)
are the same within error bars. The extrapolated value for the infinite lattice is
—0.6637 + 0.0002. The advantage of the latter wave-function, however, is that it is
consistent with sum rules and gives accurate excitation spectrum. Fig. 3.b shows
the square root of the expectation value of the square of the staggered magnetization
obtained with the improved wave-function as a function of L™*. The extrapolation
to the infinite-lattice gives m! = 0.349 + 0.002.

3. Heisenberg Antiferromagnet at Low Temperature and Nonlinear ¢
Model. Long Range Correlations.

Recently we simulated[16] the spin-1/2 2D AF Heisenberg model using Hand-
scomb’s quantum Monte Carlo method([37]. The calculated correlation length in-
creases very rapidly with decreasing temperature and is consistent with that inferred
from neutron scattering experiments. CHN studied the equivalent QNLoM by Renor-
malization Group with the 3-function calculated with weak-coupling perturbation
theory up to one[18] and two[19] loops. Their one-loop calculation suggests the form
&T) = a/Te¥T at low temperatures[18]. This form, however, does not fit the £(T)
obtained from the QMC calculation of the Heisenberg model[16]. Later, the two-loop
calculation[19] of CHN gives a different prefactor namely, {(T) = aet/T. Using both
MC simulation and saddle point approximation we have studied[20] this model to
determine the correct behavior of £(T) and to make contact between the two models.
We found that in the ordered phase of the QNLoM, €(T) can be approximated by

s
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the second form which also agrees with {(T') obtained from the QMC study of the
Heisenberg model. Our §(T') agrees reasonably well with the neutron scattering data
using J = 1270K. Next, we review our main results and make contact between the
two models.
The nonlinear ¢ model in two-space one-Euclidean time dimensions is defined
as(17)
Bhc
_ po 512 512 512
Seff = T dr/dmdy ((619) + (0y82)” + (0-Q) > (3.1)
0

Here 1 is a three-component vector field living on a unit sphere, c is the spin-wave
velocity and 8 = R;—T. We discretize the space-time and put the model on the 2+1
dimensional lattice:

Seft = 2 z (). (87 + &) + 4(E - &), (3.2)

where g = fic/ppa and & covers the 241 dimensional lattice of lattice spacing a, size
N?Ng and
Bhe = Nga. (3.3)

In this model the average of the field Q is proportional to the average staggered
magnetization and could describe the spin-dynamics within one isolated CuOj layer.

From the two-point function we calculated the correlation length £j544 in lattice
units as a function of g, Ng and N. It is known that for g > g, where g is the
3D critical point {T = 0), the three modes of the theory have degenerate finite
masses (inverse correlation lengths). For g < g¢, however, there are two masses in
the theory. There are two modes which become massless (Goldstone-modes) in the
3D theory (8 — oo) and they are related to the radial motion of the average field.
There is also a massive mode associated with fluctuations in the magnitude (radial
component) of the average field. Next, we discuss the mode having the smallest
mass, which dominates the behavior of the correlation function at large distances.
For continuum limit behavior and for eliminating finite-size effects {j44¢ must satisfy
1 << &a4 << N. If, therefore, N is large enough so that {44, << N, the correlation
length is only a function of Ng and g. In physical units £ is given by

€ = {lan(9, Ng)a. (3.4)

To keep the correlation length ¢ constant in physical units, for any a — 0 we
should find the value of g which gives the same value of {. This is achieved through
Eq. {3.4) which defines the function g(a). The combination of Eq. (3.3) and Eq. (3.4)
gives: §{ = bR_T where b = %’%’L}. In order to keep ¢ constant at a fixed
temperature we should keep the ratio b constant. b is the physical value of the
correlation length at temperature T in units of ap = R'r:;iT' In Fig.4 we give b as a
function of g for several values of Ng. We notice that the lines for various Ng pass
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through the same point (gc,b*) = (1.454:0.01,0.80 £ 0.05). Let us say, that we would
like to define the theory’s coupling constant at the value b = by shown in Fig.4. The
line b = by intersects the various curves for different Ng’s (i.e., in this case in which
the temperature is constant for different a’s), and the value of g at the intersections
define g(ap/Ng). We note that limy, . glar/Ng) = gc. At g = gc we obtain

he
€=V (3:5)
where b* = 0.80 £ 0.05. Notice that at T = 0, g, turns into a critical point.
g
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Figure . The ratio b = {j,44/Ng versus g for different Ng. Notice that
all the lines for different Ng pass trough the same point (gc,b*). The inset
shows the renormalization group B-function.

Using correlation lengths obtained on lattices of sizes 502 x Ngand 1002 x Ng with

Ng = 2,4,6,8, we calculate the renormalization group S-function fpg = —a%.ﬂ.
Qur results for Spg are shown in the inset of Fig.4. At g = g, Brg changes sign.
At T =0, £* = oo, and for g < g. the system enters in a phase with spontaneous
symmetry breaking, where the staggered magnetization is non-zero. We see that close
to the critical point Sp(g) is linear:

Bre(g) = —B1(g —ge) + ... (3.6)
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We find go = 1.450£0.003 and 31 = 1.2840.05. Integrating both sides of the equation

— g d,
defining Spg one obtains a(g) = ase I Prc(9) where a, is a constant of integration
having dimensions of length. Using the linear approximation for Bg close to the
critical point we find

1
a(g) = aglg — gel#r. (3.7)
Clombining Eq.(3.3-4) and Eq.(3.7) we obtain

T 1

- (3.8)
7 Nglg — gc|”

¢ 1

i §1a11(9, Ng))ig — gcl?r. (3.9)

where KgTy = %f. The constants a, and Ty, are independent of g and a. The function
€iat1(9, Ng) is known for several values of g and Ng from our MC calculation. Given
a value for g and Ng, using (3.8) and (3.9), we can find the temperature t = T/T,
(in units of T, and the corresponding value of the correlation length /e, in units
of ay. In Fig.5 we show the function {/a, versus ¢ = T/T, found in this way.
We see that all points scale to a universal curve f(t). We notice the occurrence of
dimensional transmutation where, although the lattice spacing is removed together
with g, we obtain correlation lengths in units of a finite length scale as as a function of
temperature ¢ in units of T,. The curve f(t) can be approximated by an exponential:

f(t) = Ag exp(Bo /t), (3.10)

as the saddle point approximation[20] and the most recent work of CHN|[19] suggest.
The best fit gives Ay = 0.0795 and B, = 4.308 and it is shown as a solid line in
Fig.5.

For g >> g. the correlation length in the nonlinear ¢ model is only a function
of g and is independent of T. At the critical point g = g, we find that at low T, §
grows as 1/T as the temperature decreases. We have compared our numerical results
with results obtained in the saddle point approximation. We find good agreement in
the region g > g, but poor agreement for g < ge.

It is possible to make contact between the S=1/2 antiferromagnetic Heisenberg
model and nonlinear o model. In Ref.16, we fit the correlation lengths to two different
forms

&T) =C/TT, (3.11)

and

¢(T) = Cb/IT-TIM?, (3.12)

and we found that the latter form fits better and concluded that our simulation
indicated that either we need to reach lower temperatures for the form (3.11) to be
valid or that topological excitations may play an important role in the dynamics of
the Spin-1/2 Heisenberg antiferromagnet. Following our findings for the o model and
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Figure 5. The function f(t)(see text for definition). Our data for various
g’s collapse on the same curve by using the calculated renormalization group
B-function. The solid line corresponds to an erponential fit.
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Figure 6. Demonstration that the correlation length as a function of T can

be approzimated by aeb/T,

the revised suggestion of CHN[19] we attempt to fit our numerical results for the

Heisenberg model to

f/aH ZAHCXP(BHJ/T). (3.13)
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This form, i.e., without the 1/T prefactor, fits very well our data as demonstrated
in Fig. 6, giving Ag = 0.25 and By = 1.4. Similar values have been reported in Ref.
38. On this basis we may conclude that the results of our simulation are consistent
with SWT and existence of an ordered state at T = 0.

Let us assume that the two models are equivalent at low T'. In order to obtain
the best fit between the calculated correlation length for the two models, we need to
assume that the spin-1/2 AF Heisenberg model corresponds to the broken phase(g <
gc) of the o model in the continuum limit. Therefore the spin-1/2 AF Heisenberg
model should order at T = 0 and Agag = Aga, and ByJ = ByT,. We obtain
T, = 0.325J and ag = 3.14ag.
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Figure 7. The solid line corresponds to an exponential fit to both our results
for the nonlinear ¢ model and the spin-1/2 AF Heisenberg model. We used
the value J = 1270K for the AF coupling. The open circles with error bars
are neutron scattering data taken on the insulator LagCuOy.

In Fig.7 we plot the inverse correlation length versus T as observed by neutron
scattering experiments{14]. The solid curve is the exponential given by Eq. 3.13 which
fits the results for £(7') obtained from the nonlinear ¢ model and AF Heisenberg
model. In the plot we used ag = 3.84, the C'u — Cu distance, and J = 1270K which
is close to the value reported by Raman scattering experiments{39]. Using this value
of J and the expression ¢ = 1.22¢/2Ja we obtain ¢ = 0.72¢V — A, a value higher
than the lower bound of 0.6V A reported by thermal neutron scattering studies[14]
and lower than the more recent value of 0.85¢V A inferred form high-energy inelastic
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neutron scattering|[15]. It is interesting, however, that we can achieve this agreement
with no-free parameters. Our curve disagrees with the data very close to the 3D Neel
critical temperature Ty ~ 200K . Smaller values of J will bring our results closer to
the data in that region but further away from the data at higher T'.

4. Holes in a Quantum Antiferromagnet.

Several authors[3,21,22,23,24] have studied the motion of a single hole as de-
scribed by the Hamiltonian (1.1-4) or the t — J model using perturbation or varia-
tional theory and exact diagonalization of finite clusters. It has been found that the
hole, moving in an antiferromagnetic background distorted in the neighborhood of the
hole, is transformed into a well-defined quasiparticle. This quasiparticle excitation
is separated by a small gap from an incoherent spectrum of spin-excitations. The
minimum of the hole-band is located at k = (5,%), the bandwidth is of order J/t
for large J/t and the hole-quasiparticle strength relative to the total strength of the
spectral function increases with J/t.

The paired-magnon analysis can guide us to construct a wave-function for the
single-hole. Following the mapping of the Heisenberg model to the Boson lattice-gas
model a hole in a quantum antiferromagnet can be mapped to an impurity moving
in a Bose system. A variational wave-function which includes spin-spin and spin-hole
correlations is the following

W(F) >= =S FRG g F) > (4.1)
R

with |¢(ﬁ) > is the state (2.2) with the hole at R. The correlation operator GE has
the following form

- 1 o —ikF 1 ..
Gp = ezp(—§ Z: h(7)e ik Ts;-i+17 3 Z U(U)Szz‘3§>- (4.2)

This wave function can be obtained from perturbation theory of the t — J model
in the limit ¢/J,,J1/J, << 1. It contains the main pair (spin-spin and spin-hole)
correlations. The origin of the second term is the same as that in the pure Heisenberg
model and creates spin fluctuations (the |¢ > state is a Néel state in the x-direction
therefore the s¥s% term creates pair-fluctuations). The first term couples the almost
Neel state with the state where the hole hops to a neighboring site. It may be
interesting to notice that this wave-function is the translation for the case of the
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Figure 8. Hole energy for k = (§,75) as a function of J/t. The solid
line are ezact diagonalization results{2/], while the crosses and circles are
obtained with the variational wavefunction function (4.1-2) with h = 0 and
h # 0 respectively.

spin-system of the Feynman-Cohen[40] wave-function for the elementary excitations
in liquid He which takes into account the backflow correlations.

In general u;; may depend on the distance from the hole. In practice we find
no significant lowering of the hole energy by allowing for such a non-uniform u;;.
We, therefore, used the same u;; as that found in the VMC calculation at half-filling
(Heisenberg model) which is explained in section 2. The hole energy is sensitive to A(1)
but not very sensitive to h(r > 1). Using the Metropolis algorithm we calculated(27]
the expectation value of the tJ Hamiltonian (the t — J model is obtained from (1.1)
simply by neglecting H3 and substituting U = 4t2/J in the Hy term) with the wave-
function (4.1-2) for one hole.

Fig.8 compares our variational results for the energy of a hole (we have sub-
stracted the energy of the no-hole state) moving with k= (5, 5) for the two cases,
h = 0 and for the optimal value of k, with exact diagonalization results on the 4 x 4
lattice [24] for several values of J/t. The introduction of the spin-hole correlations
(h # 0) improves the energy significantly. The variational wave-function performs
best when J/t > 1; for lower values of J/t we need to improve the wave-function to
include two- or higher-hop processes. Similar results are found for the 10 x 10 lattice.
The single-hole energy e(l;) (we have not substracted the no-hole energy in this case)

as a function of the momentum k is calculated for several values of J/t. A typical
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Figure 10.  The binding energies per hole b(X) for a system of X holes as
a function of t/U. The lower-left inset gives the hole-hole distribution func-
tion for various distances. The top-right inset demonstrates the “magic”
numbers for even number of holes. See text for more details.
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result is shown in Fig. 9 calculated for J/t = 1 on a 10 x 10 lattice. The curve
features a minimum at k = (35%)- The maximum value is at k= (0,0) or k= (m,m)
and both values are the same within error bars. The bandwidth decreases with J/t.
We also find, in agreement with other authors[22,23], that the effective mass of the
hole in the direction towards (0,7 ) is larger than that in the direction towards (0, 0).

Next, we briefly discuss our main results obtained by exact diagonalization of the
full Hamiltonian (1.1) on finite clusters of 10-sites[3]. In this work we have included
the H3 term. In Fig. 10 we plot the binding energy per hole defined as

bx) = B ;(XE(I)

(4.3)
where E(X) is the total energy of the system containing X holes, measured from
the energy of the no-hole state (i.e., we have taken E(0)=0). Notice that there is a
range of t/U where two-hole pairing is favored against multi-hole pairing or phase
separation. The lower left inset shows the hole-hole distribution function and the
top-right inset shows B(X) versus X. The latier inset demonstrates that the peaks
in b(X) occur at even hole numbers. This calculation has been recently reproduced
in Ref. 25. In addition, in Ref. 25, it was found that the pairing is predominantly
d-wave.
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