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SINGLE-HOLE STATE IN THE 2D t-J MODEL IN A TRANSVERSE
MAGNETIC FIELD

C. F. Lo, E. Manousakis and Y. L. Wang
Department of Physics and Center for Malerials Research and Technology
Florida State Universily, Tallahassee, FL 32306

We have investigated the ground state of a single hole in the {-J model
on a 2D square lattice in a transverse magnetic field using the coupled-
cluster method. Here, we study the effects of the magnetic field on the
system by considering the Zeeman interaction only. We obtain an analytical
expression of the hole energy dispersion function e(k) which in the small
J limit reproduces several features consistent with earlier studies of the
t-J model in zero magnetic field. As the magnetic field increases, the hole
energy band is shifted downward around (,7) and upward around (0,0),
whereas comparatively small changes occur in the neighbourhood of the
zone boundary.

In recent years the high-temperature superconductors have been widely studied,
both theoretically and experimentally. It has been suggested that the nearly half-
filled, 2D Hubbard model in the large Coulomb repulsion limit might be relevant
to the physics of high-temperature superconductors.! In the strong coupling limit
t/U <« 1 and using second-order perturbation theory, the nearly half-filled Hubbard
model can be further simplified to what is called the ¢-J model. This model has
now become the focus of theoretical studies. An extensive effort has been made
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recently to study the properties of the ground state of a single hole by a number
of authors both analytically and numerically.>>* In the present work, using the
coupled-cluster method®$, we study the ground state of a single hole of the t-J
model on a 2D square lattice in a transverse magnetic field. Here, we study the
effects of the magnetic field on the system by considering the Zeeman interaction
only. We obtain an analytical expression of the hole energy dispersion function €(k);
in the small J limit this dispersion function reproduces several features that have
been found in earlier studies of the t-J model in zero magnetic field. As the magnetic
field increases, the hole energy band is shifted downward around (,7) and upward
around (0,0), whereas comparatively small changes occur in the neighbourhood of
the zone boundary.

The basic idea of the coupled-cluster method can be outlined as follows: The
ground state of a many-body Hamiltonian H can be expressed as

¥ >= ezxp(S)|®o > (1)

with |®o > being a starting wave function which is not orthogonal to the exact
ground state. The Schrodinger equation

H|¥ >= Epl¥ >, (2)
can then be written as
H|®o >= exp(—S)Hezp(S)|®o >= Eo|®o >, (3)
where 1
exp(—S)Hezp(S) = H +[H,S] + g[[H,S],S] + . (4)

Since |®o > is normalized, we may write
< Bo[H|® >=< Polezp(—S)Hezp(S)|®o >= Eo , (5)

and by projecting Eq. 3 onto the states |®, > which are orthogonal to @, > we
obtain

< B, |[H|Po >=< Pulezp(—S)Hezp(S)|Po >=0. (6)

This orthogonality condition yields a series of nonlinear coupled equations, each of
which contains a finite number of terms. The correlation operator S is determined
by solving these equations. Once S is known, the ground-state energy and wave
function can be obtained readily. Hence, the problem of finding the ground-state
energy and wave function of the many-body system is reduced to computing the
operator S. Nevertheless, this is a very formidable task, and we have to resort to
some approximation to solve the coupled equations. In the following we will apply
a successive coupled-cluster approximation scheme to investigate the ground state
of a single hole of the 2D {-J model. This approximation was recently proposed by
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Roger et al.5 and has been successfully applied to both quantum spin systems and
the Hubbard model on a square lattice.>"8
The Hamiltonian of the ¢-J model in a transverse magnetic field is given by

fof -

sIs!+ s;s;

H=—1 Y (=ni)C], Ciolt = mjo) 4 5 S(Z 20
(5.4),0 (i.4)

—-S5iSi)—h>_SF. ()

Anticipating antiferromagnetism in the half-filled case, we have rotated the quan-
tization axis at each site of one sublattice (down) into the direction of the local
mean field, as evidenced by the —o subscript in Eq. 7. We choose the single-hole
state with momentum & to be given by

- 1 -
exp(S)|k >= ezp(S)W Zexp(ik -73)Cit|Neél >, (8)

where the Neél state is taken to be the state with all spins ‘up” |Neél > =

]-L =1 Ivac > in this new basis. For the zeroth level of the coupled-cluster approx-
1mat10n (CCA) we simply choose the operator S equal to zero. Using this trivial
correlation factor S, we obtain

exp(—S)H exp(S)|k >={E(k) + Fy E CLCjT(l - nip)+
5]
F) 8787 +F325 ME >, 9)
(5)

where E(k) = —J(N/2=1), F; = —t, F;, = J/4 and F3 = —h/2. Then in the
next level of approximation we also include in S the terms necessary to cancel the
remaining terms of Eq. 9:

S:alz T(l—n,T)+aZZS S +Q3ZS_ (10)
(.4) (5.4)

Here the first and second terms represent the nearest neighbor hole-hopping and
spin-exchange respectively, while the third is the single-site spin-flip term. After
some straightforward algebra we find an expression similar to Eq. 9 with different
E(k) and F;’s, plus extra terms which are neglected at this level of approximation.
By setting the coefficients to zero, the following set of three nonlinear coupled-
cluster equations of the parameters a;’s are obtained:

5ta? 3Ja Jayal

T-{-t§+ 5 L+ hojag —t — 5 =0 (11)
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2 2 2
7 4 37a— 7% 4 ghagag — 5Jad — 3Jajag — 10108 Haas (12)
1 2 12 3
hai h 3
2Ja3+8Ja2a3+—2———2——4ha2—-2Ja3=0. (13)

These equations have no closed-form solution in general and need to be solved
numerically. The hole energy e(k) is given by

F h
e(k) = —4ta; — J(of + 4oz + 2aF — 1) + _‘2’2

1
+ Z(Jaf’y,; +4tas + 2hey — 6Jar03)7; (14)

where 7p = 37,y exp(ik-7) = 2[cos(k; )+ cos(ky)], and the sum denotes summation
over nearest neighbor sites around the site 0. Note that only the terms involving
hole-hopping and spin-flip are explicitly responsible for the dispersion of €{k), and
that along the direction (7,0) to (0,7) in the Brillouin zone the ¢ vanishes and the
dispersion curve is flat.

For the case of zero magnetic field, we have az = 0 and the remaining two
coupled-cluster equations, i.e. Egs. 11 and 12, can be analytically solved to deter-
mine the a7 and as:

3J 40¢2
:1—0¥{ 1+ﬁ_ 1} (15)

31— ay) 5
oy =~ Sy 1 {1/1+9(1_a1)2—1}. (16)

The corresponding hole energy c(lg) is

a

~ Jao?
(k) = —4tay + J(1 — o? — 4ay) + —gi'y,% . (17)

In the small J limit, keeping terms up to the linear-order in J /t, Eq. 15 leads to:
ar = 1/2/5—3J/10t and oy = —0.13905 + 0.05020J /¢, and the hole energy is e(E)
= —2.5298t 4 2.3562J + 0.1J42. It is clear that the hole energy dispersion function
has a minimum value of ——2.5598t + 2.3562J at the zone boundary, which at this
level of approximation is degenerate, and attains its maximum at & = (0,0) and
(m,7). Thus, the hole energy bandwidth, defined as the difference between €maz and
€min, 18 given by W = 1.6J. Also, the effective mass of the hole is much smaller in
the direction (0,0) to (7,r) than in the direction (0,7) to (7,0). These results are
in agreement with the qualitative statements made in previous studies of the ¢-J
model] 234
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Hole—energy E

J/t

FIGURE 1 Hole energy E/t vs. J/t (at t=1). The solid line represents the results
from coupled-cluster calculations. The squares refer to the exact diagonalization
results of the t — J model on a 4 x 4 lattice.

In Fig. 1 the hole energy E, identified as the bottom of the hole energy band, is
plotted for 0 < J/t < 2. Numerical results for the hole energy from exact diagonal-
ization of the ¢-J model on a 4 x 4 lattice are shown as well.* Note that our results
agree very well with the exact diagonalization results. Also, Fig. 2 compares results
for the hole bandwidth. It is apparent that except for the small values of J/t, there
exists a considerable discrepancy between the two sets of results. The difference
may be due to the need for higher level corrections of the CCA to account for the
dispersion. For the case of non-zero magnetic field, as mentioned above, the set of
three nonlinear coupled-cluster equations has no closed-form solution, and thus we
have to solve these equations numerically to determine the parameters o;’s for dif-
ferent values of J/t. With these numerical results we are able to calculate the hole
energy dispersion function c(k) in Eq. 14. Some typical results are shown in Fig. 3
for J/t = 0.2. For zero magnetic field our results for 6(k) are also consistent with
previous studies of the t-J model. As the magnetic field increases, the hole energy
band is shifted towards lower energy values around (,7) whereas around (0,0) it is
shifted upward. However, comparatively small changes occur in the neighbourhood
of the zone boundary. These results are in qualitative agreement with those obained
by a self-consistent perturbation approach which treats the spin-background in the
linear spin-wave approximation, except that in the latter approach a decrease in
energy around (0,0) is observed for small value of J .2 This discrepancy may indicate
the need for higher level corrections of the CCA.

In summary, we have investigated the ground state of a single hole of the 2D ¢-J
model in a transverse magnetic field using the coupled-cluster method. We obtain
an analytical expression of the hole energy dispersion function e(lc) which in the
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FIGURE 2 Bandwidth W/t vs. J/t. The solid line represents the results from
coupled-cluster calculations. The squares refer to the exact diagonalization results
of the t — J model on a 4 x 4 lattice.
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FIGURE 3 Dispersion curves, E(E)/t, plotted along the direction T M XT for
J/t=0.2 and various values of h/t: 0.0, 0.05, 0.1 and 0.2.
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small J limit reproduces several features found in earlier studies of the ¢-J model in
zero magnetic field. As the magnetic field increases, the hole energy band is shifted
downward around (m,7) and upward around (0,0), whereas comparatively small
changes occur in the neighbourhood of the zone boundary. We are in the process of
studying the convergence of the CCA by including higher-order terms and a more
detailed report will be presented elsewhere.
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