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FOREWORD

The Workshop on Monte Carlo Methods in Theoretical Physics was held at the Elba
Intemational Physics Center (EIPC) in Marciana Marina, Italy, from June 27 to July 6, 1990
and this volume summarizes most of the contributions presented in the Workshop.

The topics dealt with have been Lattice Methods in QCD, Variational Monte Carlo,
Green Functions Monte Carlo, Path Integral Monte Carlo and Diffusion Monte Carlo in
Atoms&Molecules, Condensed Matter, Electronic Systems and Nuclear Physics.

The first days of the Workshop have been devoted to tutorial lectures, while the actual
Workshop has taken place in the subsequent days .

One of the aims of the meeting was to bring together researchers from different ficlds
1o discuss the applications of Monte Carlo methods to rather different problems and thus to
stimulate a cross-disciplinary interaction.

The Workshop was also intended to introduce young researchers to the Monte Carlo
techniques and, in this respect, the organizers wish to thank D.Ceperley, M.Kalos,
E.Marinari, P.Menotti and V.R.Pandharipande for their efforts in preparing and delivering
the tutorial lectures.

We owc all participants and lecturers our sincere thanks for making the meeting
interesting and fruitful.

The financial support of the Italian Consiglio Nazionale delle Ricerche (CNR), Istituto
Nazionale di Fisica Nucleare ( INFN), Scuola Normale Superiore di Pisa, Universita' di
Lecce, the Marciana Marina's local government and the Azienda Autonoma di Turismo
dell'Isola d'Elba is gratefully aknowledged.

We also want to warmly thank Bruna Ceccarelli, Carla Gentile, Antonella Sapere and
Giacomo Monteleone for their unvaluable help in the organization of the workshop.

Finally, we wish to thank the Director of EIPC, Stefano Fantoni, for his constant

assistance in the organization of the meeting.

Sergio Caracciolo and Adelchi Fabrocini
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ADBSTRACT

We develop variational wave functions for the ground state as well as spin and
hole excitations in a quantum antiferromagnet. The wave functions are introduced by
means of an analogy of this problem to that of pure liquid He and that of liquid *He
with 3 He impurities. The wave functions are used to study the excitations in the case
of the antiferromagnetic Heisenberg model and the t — J model on the square lattice.

1. INTRODUCTION

The ¢ — J model is under intense theoretical investigation because it may be
relevant to the physics of the copper-oxide superconductors;! in addition, it is one
of the simplest models to describe strong electron correlations arising from the on-site
Coulomb repulsion present in certain materials where their valence electrons are almost
localized. It describes a mixture of interacting spin and charge degrees of freedom
which are associated with the electron coordinates only. It contains a Heisenberg
antiferromagnetic exchange which allows for quantum spin fluctuations and a hole
hopping term. The electronic motion is subject to constraints in which configurations
with double occupancy of the same Wannier state are only allowed as virtual processes
due to their high energy cost; the restriction of the available Hilbert space introduces
the coupling between spin and charge degrees of freedom. These effects can be realized
in condensed matter and can be described in a minimal way by the ¢t — J model:

. .o 1.
H=-t Z (ch]-,, + 0}0%) +J E (S;- 55— annj). (1.1)
<i,j>,0 <ii>

Here, the creation operator cI-a creates electrons at the site ¢ with spin o; the §,~ is

spin—% operator which can be expressed in terms of the cI-a and ¢; 4 operators. J is
the antiferropnagnetic coupling and ¢ is the hopping matrix element that describes hole

hopping. Because of the strong two-dimensional features of the copper-oxide based
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superconductors we are interested in the model (1.1) on the square lattice. General-
izations of the ¢ — J model, in order to describe certain features of the materials more
realistically, have been also discussed in the recent literature.

Perturbative methods are probably applicable in certain range of the ratio t/J.
Since, in the copper-oxide materials t > J, we are also interested in the regime of large
t and therefore, nonperturbative methods are necessary to study this regime. Several
features of the problem with and without holes have been understood in terms of a
combination of methods. For example, the no-hole problem is equivalent to the spin~%
Heisenberg antiferromagnet on the square lattice and there is solid evidence? based
on analytical, semianalytical and purely numerical techniques that the ground state of
this model is ordered and its low-lying excitation spectrum is qualitatively described
within spin-wave theory. The motion of a hole in a quantum antiferromagnet has also
been studied by a number of methods.? The problem of a finite density of holes has
been studied by several mean field theories.

Due to the fact that there is no exact solution beyond one dimension and exact
numerical diagonalization methods and quantum Monte Carlo methods for fermions
are restricted to very small size lattices® one needs to consider more than one com-
plementary method and to compare the results. In these proceedings we shall discuss
certain results®78 obtained using a variational method which is based on a formal
analogy of this problem to that of 3He-4He mixtures. We shall study the ground state
and spin-wave excitations in the undoped t — J model as well as hole excitations. We
use a known analogy of the problem of spin systems to that of a Boson fluid. In order
to construct variational wave functions, we shall use this analogy and ideas used in the
case of other strongly correlated systems such as liquid 4He and 3He-*He mixtures.
This is an approximate method and can be improved by means of correlated basis
perturbation theory;? the latter scheme consists of a rather involved calculation but, in
principle, it can become the framework of calculating the corrections to the variational
calculation systematically.

In the next section, we introduce the analogy of the undoped antiferromagnet to
that of pure liquid *He and we discuss Jastrow-Marshall type of ground state wave
functions. In section 3, we discuss spin excitations and how to obtain an optimized
Jastrow ground state wave function for the ground state which is consistent with the
existence of zero point motion of spin waves. In section 4, we discuss the case of a
single hole in a quantum antiferromagnet and its analogy to the problem of a 3He
impurity in liquid 4He.

2. ANALOGY WITH BOSE FLUIDS

We shall outline the analogy of hard-core Bose fluids with spin-systems, which was
first pointed out by Matsubara and Matsudal®? who have shown that liquid *He when
approximated as a quantum lattice-gas model is equivalent to the ferromagnetic spin-
é Heisenberg model. Using a unitary transformation of the basis!!, we make use of
this analogy for quantum antiferromagnets. The eigenstates of the spin-% Heisenberg

antiferromagnet can be expressed as
W>= > B, Y G ) LRI I (2.1)
1720 TNy

where the configuration j¢ > is labeled by the location on the lattice of the spins
pointing up ( Ny is the number of up-spins) and the function ¥(71,72, ..., 7N, ) gives the

amplitude of that configuration in the state |§ >. L(c) is the number of spins pointing
up in one sublattice. The phase (—I)L(c) is separated from the amplitude ¥ in order
to have a non-negative 9 for any ground state conﬁguration.11 It can be shown using
this representation that the eigenvalue problem Hly >= Ely > reduces to a difference
equation for ¥(7y, 7y, ..., 7y, ) identical to the many-particle Schrodinger equation on a
square lattice:

N,
Jzy O ~ L2 o .. I, I L
——23 3 (1/’(?1, e it by TN — YL T -~~,TN.)) + 3 Vig$(F1, 72, 0 T
i=1 § i<j
= eP{F1,72, -, TN,), (2.2)

where 5 is a vector of unit length that connects the site located at 7; with each of the
four n.n. Here ¢ = E — A’?—‘l + Ny(Jzy + 2J), where N is the total number of sites
on the square lattice. The first term has the form of the kinetic energy operator (it
becomes —t V2 is the continuum limit) and the “particles” correspond to up spins and
the with “mass” m = 2/Jpy (we use units where a = 1 and & = 1); they interact
via a pair potential V;; having an infinite on-site repulsion and Vj; = J if ij are n.n;
otherwise Vj; = 0. Since the wave function ¥ is symmetric with respect to “particle”
permutations, this represents a quantum lattice-gas of bosons.

This is a useful representation because our knowledge about the system of Bose-
particles can be used for the magnetic system also. Depending on the relative magni-
tude of Jzy and J, (2.2) has different solutions. For Jzy << J, the “potential” energy
term dominates and the particles prefer to stay predominantly at the configuration
that minimizes the Ising interaction, thus creating a quantum solid which for “parti-
cle” demnsity p = é (8%, = 0) corresponds to an antiferromagnetically (AF) ordered
state in the z-direction. In case Jzy >> J, the “kinetic” energy dominates and the
system behaves as a quantum liquid. The ground state of the system, in this case, has a
condensate which corresponds to off-diagonal long-range-order (LRO) in the one-body
density matrix and < 'wlbgh/; >= nc # 0 where b(f) creates a “particle” at the zero-
momentum state and nc is the condensate fraction. Going back to the spin-variables
this means that < ¢|ml|1/) >=< 1/)|le1/) >= n¢, where mL'y are the components of the
staggered magnetization. Therefore, in this case the magnetic system is characterized
by AF LRO in the z —y plane. In the isotropic case Jzy = J there is spherical symme-
try and hence by a rotation in the spin-space the “potential” and the “kinetic” energy
terms can be interchanged. The ground state, however, can spontaneously break such
symmetry by choosing a given direction to develop staggered magnetization aided by
the presence of an external staggered field which shall be removed after taking the
thermodynamic limit.

The simplest non-trivial ground state wave function of a Bose-fluid which takes
into account short-range correlations due to the existence of the hard-core is the Jastrow
wave function: ;

Po(71,72, TN, =€ 2 Loaci ™, (2:3)
where u;; = oo for i = j and u;; #£0for i # j. The state (2.3) has a broken symmetry
associated with the Bose condensate. Inserting (2.3) in (2.1) and going back to the
spin variables by replacing p; = %(Uf + %) (where p; = 1 or 0 depending on whether
there is a “particle” (up-spin) at site i or not), we obtain the Marshall!! state

WJ() >= z(—l)L(C)ezp(——% Zuijafdj)lc >, (2.4)

i<j
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Here the sum runs over all lattice sites and if we extend it not only over those con-
figurations with Ny up-spins but over all possible configurations this state takes the
following form:
1 Az
[¥o >= ez‘p(—i > “ij”f";z') ¢ >, (2.5)
i<j
where |¢ > is the Néel state with antiferromagnetic order in the z direction, ie., a
product over all sites of states | + & >;= ﬁ(H >; *|— >;) which are eigenstates of
5';" with eigenvalues +1/2 or —1/2 when the site i belongs to the A or B sublattice
respectively. The variational state (2.5) is characterized by antiferromagnetic order
with < S:f/ >=< §f >=0and < 57 >= +m!, where m! is < % and depends on the
function u. If we restrict the sum in (2.4) over configurations with zero z-component
of the net spin we find that < 57 >=< S;y >=< §F >= 0, however each of the two
correlation functions < SfSJ” > and < Sf’S]y > at large distances approach the value
%(—1)“‘-7-m1\2 while < S'fS; > approaches zero.
Wave functions of the form (2.4) have been used in the past to study the ground
state of the spin-% Heisenberg antiferromagnet by several authors, including Marshall}!

“and more recently by Huse and Elser and by Horsch and Linden.12

The paired-phonon analysis known from the theory of quantum fluids!3 has been
used by the author® to find an analytic form for the Jastrow correlation factor. Includ-
ing the contribution of paired-magnon states in the ground state, the Jastrow factor is

obtained as
=1 i/ iE(FiF})
u'J=ﬁZ:( 1_7g—l)e i, (2.6)
k.

where on the square lattice
1
%= —é(cos(kza) + cos(kya)). (2.7)

The ground state energy obtained in this approach is the same as the result of spin-wave
theory.

3. SPIN EXCITATIONS

The elementary excitations in the Bose-fluid are density fluctuations (phonons in
the long-wavelength limit) which in the magnetic system correspond to spin-waves. In
the Bose-system they are created by the density operator pG= Zf_v__“l e acting on the
interacting ground state; going back to the spin variables this operator is transformed
to the operator S; = E,Nzl Sl-‘ei‘i'ﬁ. Chester and Reattol4 have shown that the zero-
point motion of the long-wavelength modes of the Bose-system (zero-sound) gives rise
to a long-range tail in the Jastrow wave function. For a 2D spin-% system we obtain

me
'll('l‘ — CX)) = W’ (3.1)
where c is the spin-wave velocity and m = 2/J (when Jzy = J). The ground state
of the Heisenberg antiferromagnet has zero total S, and the number of up spins is

Ny =¥, giving pg = 1/2.

ke b

Using the expression (2.6) for u;;, we find

u(r — o0) = —\/—E (32)
xr
Comparing the tails (3.1) and (3.2) we obtain c = ¢cp = /2Ja which is the value found

by linear SWT. - .
The Jastrow wave function (2.6) possesses AF LRO with the staggered magne-

tization in the z — y plane and therefore the dynamic structure function corresponds
to
S(@w)= Y 1 < nlSH0 > *6(w ~ wno)- (3.3)
n#0
Notice that §(§,w) defined by this equation in the equivalent hard-core Bose represen-
tation corresponds to the density-density correlation function.
The structure factor is obtained: as

S(8) =< 0157 ;SHo->= /0 * wS(g,w). (3.4)

The w-moment of 5(§,w) can be obtained as < OI[Siq-, H, S:«]]IO > which gives
o0
[ dwwstae) = 4101 =), (3.5.0)
0

where

= +s- St 3.5.b
f=g<OSS s+ 578 A0> (3.5.0)

A third sum-rule can be derived” by studying the response of the spin-system .t(? an
external magnetic field in the z-direction. This is analogous to the compressibility
sum-rule known in the theory of quantum fluids and in this case is translated to the

“magnetic susceptibility sum-rule”. We obtain:

®© o(F n|SZ|0)|2
LI lim/ 5@9) g = 1im ————KEI ilE) : (3.6)
2¢€ ¢—0Jp w q—0 ng0 m 0

where € is the second derivative of the ground state energy per site e(M)asa .fu.n.ctio.n
of the magnetization M = %, < 0]3;57|0 >. The perpendicular susceptibility is
given by x| = 1/€" in units of gup =1, where pp and g are the Bohr magneton and
g-factor of the electron. o s
Feynman’s assumption!® introduced for the elementary excitations .of liquid *He,
states that in the long-wavelength limit a single-phonon (in this case: single-magnon)
excitation dominates the dynamical structure function. This is equivalent to the state-
ment that only excitations created by the S% acting on the interacting .ground st.a.te
dominate in this limit. This leads to the following approximation for the spin-dynamical

structure function!®:

lin}) 5(§,w) = Zgh(w ~ wg), 3.7)
q—#

and from the sum-rule (3.4) we find that Zg = S(§). The combination of (3.5) and

.T) gives
e wp= L —0d) (3.8)
T s
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Furthermore, limg_,g f° w 5(§,w) dw = fq?, and w(g — 0) = cg and the spin-wave
velocity is given by

c= —'E, (3.9)

where s is the slope of §(§) in_the long-wavelength limit, i.e., S(¢g — 0) = sq.
Using the sum-rule (3.6) and Eq. (3.7), we obtain

c = /2fé". (3.10)

This expression is equivalent to the following:

52 :PJ/X_Ll (3'11)

which was derived by Halperin and Hohenbergl? looking at the problem from a some-
what different angle. Halperin and Hohenberg used the analogy between the spin-
system and liquid helium and the hydrodynamics of the two-fluid model. The present
derivation allows identification of the phenomenological parameters and furthermore
their evaluation from the microscopic Hamiltonian. The spin-stiffness constant in the
approach explained above can be identified as py = 2f.

Liu and Manousakis’ (LM) have optimized the Jastrow wave function by min-
imizing the ground state energy and requiring it to satisfy sum rules for S(§,w) in
a sell-consistent way. They used the Jastrow-Marshall form (2.4), including in the
sum only configurations with zero magnetization, and took u; = u(1,0) = 4(0,1) and
vz = u(1,1) as variational parameters and

w(f) = augp(F), for 4/z?2+y222, (3.12)

where ug p(F) is that given by Eq. (2.6) (and can be approximated by 3.2) and a is a
parameter of order 1. The tail u(r — oo) of (3.12) is given by the Chester and Reatto
relation (3.1) with ¢ = acp, where ¢y = v/2Ja. This value of ¢ and that obtained from
(3.10), by calculating f and €’ using the same variational wave function, must agree.
Therefore uy and u g are determined by minimizing the ground state energy, while
the parameter a can be determined self-consistently: given a value of a the spin-wave
velocity c is obtained by calculating f and the curvature of (M). A new value of a is
then obtained via a = ¢/cg. This is iterated until the input and the output value of a
are the same.

The wave function obtained with this approach is shown in Fig. 1 by open-squares
and the solid-line is used as a guide to the eye. The function u;; obtained by Huse
and Elser is shown by crosses, while that obtained using the paired-magnon analysis
of Manousakis® and is given by Eq. (2.6) is shown by open circles. The extrapolated
values to the infinite system for the ground state energy per site, the staggered mag-
netization, spin-wave velocity and perpendicular susceptibility are —0.6637 £ 0.0002J,
—0.349 £ 0.002, 1.22 + 0.02c) and 0.667 £ 0.004x, o {where x o = Fl]) respectively
and they are in satisfactory agreement with Green’s function Monte Carlo (GFMC)
calculations!® and other calculations.?

In Fig. 2 we give the results for S(¢) along the (1,0) direction and it'is compared
to the GFMC calculation of Trivedi and Ceperley!®. In the inset we compare the wg
obtained from (3.8) along the same direction. More recently Liu and Manousakis!?
have calculated moments of the Raman scattering intensity using the variational wave

~ld

— x— Huse and Elser
.—o-- Manousakis
—o—o- Liu and Manousakis

Figure 1. The function u;j, as obtained with different approaches ezplained
in the text, is shown. The lines are guides to the eye.

Figure 2. The S(q) along the (1,0) direction, as calculated in Ref. 7 with
thg VMC method,(:)q compared to that obtained by the GFMC calculation of
Ref. 18. The dashed-line is the result of linear spin-wave theory. In the
inset we compare the wy obtained from (3.8).

function and their results are in good agreement with those obtained by series expansion

and exact diagonalization techniques.
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4. HOLE EXCITATIONS

Let us consider the Hilbert space of all possible states of the system, with Ny
up-spins and one hole. A basis vector can be written as [ﬁ, 1,79...Fy, >, with R #
71,72, ..-TN,, Where R is the position of the hole and 71,72, ..., Ty, are the positions of
the Ny, up-spins. More precisely,

|B, 7,72 TN, >= sgs;;...sghm, F>, (4.1)

where the reference state |R, F > is the “down” ferromagnetic state with the hole at
E. The most general eigenstate of (1.1) having Ny up-spins can be written as

o= 3 (CDMIYE AT IN)E LT T > (42)
I‘ilr‘lli:'zl"'l;”l
where the sum runs over all possible positions of the hole and up-spins. The phase

factor (—I)L(C) is defined as before. In this representation we can write down the

eigenvalue equation Hiiy >= Ejp > for the function d}(ﬁ, 71,79, ..y TN, ). We obtain:

—tY (R +8,7, .. 7N,) — (R 71y TNL)) = D B(Fir 1y s Ry 0,08 i s
§ i

N,
J = _— I . o R .
_.‘IZL(d)(R,rl,...,r,‘—{-6,...,1‘N“)—¢(R,r1,...,'r,',‘..,rNu))
i=l §
+ S (Vi + UGF = BB, 71,72, 0 TN) = (1 7200 PN) (4.3)
i<j

where € = E + 3J Ny ~ 4, E being the ground state energy eigenvalue of (1.1) and
§ <iR> is equal to one for nearest-neighbors and zero otherwise. The first and the
second term come from the hole hopping term and they describe exchanges between
the hole and the down-spins and up-spins respectively. The first, therefore, has the
standard kinetic energy form (V? in the continuum limit) with hole- “mass” ili(we use
units where a = 1 and & = 1), and the second has the form of an exchange between
bose-particles and hole when they are nearest neighbors. The third term is the same
as in (2.2) and has the form of the kinetic energy operator for the bosons introduced
above whose “mass” is % V;; has been defined before and U is the interaction potential
between a hole and a boson, featuring an infinite on-site repulsion and it is equal to
J/2 for nearest-neighbor sites and zero otherwise. Apart from the second term, (4.3)
is the lattice version of the Hamiltonian for an interacting boson gas in which a foreign
particle is moving. This is analogous to the problem of a moving 3He atom in liquid
4He; we may therefore extend the variational approach to this problem, as outlined in
Ref. 15 to our case. A variational ansatz for the wave function describing the motion
of a 3 He impurity through liquid 4He is!59

- kB .y~ B . B 1 . o
(k) = Rezp(— Y (it — B+ Ag(s — B)) — 5 2 ulfi - rj)) (4.4)
i i<j

where R is the coordinate of the 3He atom, 73,75, - are the coordinates of the 4He
atoms. u;; and A accounts for the hard-core repulsion between pairs of 4He atoms or

between a $He atom and the 3 He impurity respectively. The term ezp{—1}_; (7 —

ﬁ)] describes the collective motion of the He atoms which move out of the way, in
order to make room for the impurity to pass through, filling the empty space it leaves
behind. Due to this effect, the 3 He particle has an effective mass which is larger than
its true mass. The form of the function qS;(F,* ~ R) can be determined by imposing on
the wave function (4.4) the condition that it gives a divergence-free current. Following
Ref. 15, we can obtain the Jarge-distance long-wavelength behavior of qS;(F) as

k7

¢E(F) = Ak_rg-l (4'5)

in two-dimensions.

We can now go back to spin variables using the identity A7) = %(df. + 1) where
#(F) is the boson number operator at lattice site 7 (1 if there is an up-spin, zero
otherwise); we obtain

[y (k) >= 2(—1)“0)5—*'58@ <- Do+ i¢;<)af—% Zu,-,-afu;.> |B,c>, (4.6)
Re i

i<j

where the sum over i and j now runs over all Jattice sites. If we allow the sum to run
over all configurations (4.6) becomes

W(E) >= 3 Re=#FRegp <-% Z(/\E + i¢2-)&f—-;- Euija:a;> 6, B>, (4.7)

i<j

where the state |, B > is the Néel state with staggered magnetization in the z direction

and a hole at RB. Therefore, the spin-backflow correlation operator e~ 3% otates the
local spin by an angle #* which behaves, at large distances, as in (4.5) whereas e~3 N0l
generates a magnetization along the z-direction.

Boninsegni and Manousakis® (BM) have used (4.6) and the VMC technique with
and without restricting the sum over configurations having total S = 0 to compute
the hole energy. The VMC calculation was carried out on several lattices with peri-
odic boundary conditions and the function u;; was chosen to be the same with that
determined by Liu and Manousakis’. BM found the following simple parameterization
for the short-range part of the functions d);(g) = Aosin(k-8) and Apl8) = Aocos(k-8).
For distances larger than one lattice spacing away from the hole, BM took the form
{4.5) and treated A as variational parameter. They found that A is very small beyond
nearest-neighbors. Details and justification of the choice of the variational parameters
and the minimization are given in Ref. 8.

Fig. 3 compares the results of the VMC calculation for AE(k) = E(k) — Eo,
where E(I:) (Eg) is the total energy with one-hole (no-hole), to those obtained by
exact numerical diagonalization on a 4 x 4 lattice® for several values of ¢/J and at
k= (3.,%), where the dispersion curve has its minimum. AFE is given in units of ¢.
The difference between the exact ground state energy and the variational energy at
small values of ¢/J can be attributed to an incomplete description of spin-background
fluctuations given by the factor ezp[—% Zu.;jafajz-]. For t/J > 0.5 the variational and
exact results begin to differ.

A typical result for the hole-band AE(I:) is shown in Fig. 4 calculated for ¢t/J =
0.5 and without the restriction on the total 5. The curve features a minimum at
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Figure 3. The results of the VMC calculation for the hole energy AE(E) =
E(k)— Eqy (Ref. 8), shown as circles joined by a solid line, are compared to

those obtained by ezact numerical diagonalization on a 4 x4 lattice® (dashed
line).

k= (%,%), and attains its maximum value at E = (m, 7). Notice that the effective
mass of the hole is smaller in the direction (0,0) to (w,7) than in the direction (0, ) to
(m,0). Most of these features of the hole-band have been revealed by other approaches®
and in particular they were discussed in Ref. 20 where the authors were studying the
problem from the itinerant limit.

The bandwidth W = E(J,%) — E(x,~), is found to grow as t2/J at small ¢.
At large values of t/J the bandwidth is expected to be proportional to J because of
processes which relax the overturn spins due to the hole motion. Qur wave function
needs to be improved in that range by including hole-boson exchange correlations.
The large value of the hopping matrix element ¢ (small “bare” hole mass) increases the
probability of such processes.

BM found that the quasihole excitation creates both a planar long-range
distortion? of the antiferromagnetic moment of the background §mt(r — 00) ~ k;,f and
a ferromagnetic moment localized in the immediate neighborhood of the hole, pointing
in the perpendicular direction. The magnitude of the ferromagnetic moment depends
on the momentum of the excitation, and.at the minimum of the hole band only the
long-range AF planar distortion is present.
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Figure 4. The hole-band AE(I:), calculated in Ref. 8 for t/J = 0.5 along
the paths TMXT and MM’ of the Brillouin zone (shown in the inset).
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